Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    The relationship between central and mid-peripheral motion perception and the hazard perception test in younger and older adults
    Sepulveda, JA ; Wood, JM ; Lacherez, P ; Anderson, AJ ; McKendrick, AM (WILEY, 2023-09)
    INTRODUCTION: Vision standards for driving are typically based on visual acuity, despite evidence that it is a poor predictor of driving safety and performance. However, visual motion perception is potentially relevant for driving, as the vehicle and surroundings are in motion. This study explored whether tests of central and mid-peripheral motion perception better predict performance on a hazard perception test (HPT), which is related to driving performance and crash risk, than visual acuity. Additionally, we explored whether age influences these associations, as healthy ageing impairs performance on some motion sensitivity tests. METHODS: Sixty-five visually healthy drivers (35 younger, mean age: 25.5; SD 4.3 years; 30 older adults, mean age: 71.0; SD 5.4 years) underwent a computer-based HPT, plus four different motion sensitivity tests both centrally and at 15° eccentricity. Motion tests included minimum displacement to identify motion direction (Dmin ), contrast detection threshold for a drifting Gabor (motion contrast), coherence threshold for a translational global motion stimulus and direction discrimination for a biological motion stimulus in the presence of noise. RESULTS: Overall, HPT reaction times were not significantly different between age groups (p = 0.40) nor were maximum HPT reaction times (p = 0.34). HPT response time was associated with motion contrast and Dmin centrally (r = 0.30, p = 0.02 and r = 0.28, p = 0.02, respectively) and with Dmin peripherally (r = 0.34, p = 0.005); these associations were not affected by age group. There was no significant association between binocular visual acuity and HPT response times (r = 0.02, p = 0.29). CONCLUSIONS: Some measures of motion sensitivity in central and mid-peripheral vision were associated with HPT response times, whereas binocular visual acuity was not. Peripheral testing did not show an advantage over central testing for visually healthy older drivers. Our findings add to the growing body of evidence that the ability to detect small motion changes may have potential to identify unsafe road users.
  • Item
    Thumbnail Image
    The Effects of Glare on the Perception of Visual Motion as a Function of Age
    Sepulveda, JA ; Wood, JM ; Anderson, AJ ; McKendrick, AM (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2022-09)
    PURPOSE: The purpose of this study was to determine the impact of glare, that simulated the effects of oncoming vehicle headlights, and age on different aspects of motion perception in central and peripheral vision. METHODS: Twenty younger (mean age = 25 years, range = 20-32 years) and 20 older (mean age = 70 years, range = 60-79 years) visually healthy adults completed four visual motion tasks. Stimuli were presented centrally and at 15 degrees horizontal eccentricity for 2 viewing conditions: glare (continuous, off-axis) versus no glare. Motion tasks included minimum Gabor contrast required to discriminate direction of motion, translational global motion coherence, minimum duration of a Gabor to determine direction of motion (2 different size Gabors to determine spatial surround suppression), and biological motion detection in noise. Intraocular straylight was also measured (C-Quant). RESULTS: Older adults had increased intraocular straylight compared with younger adults (P < 0.001). There was no significant effect of glare on motion thresholds in either group for motion contrast (P = 0.47), translational global motion (P = 0.13), biological motion (P = 0.18), or spatial surround suppression of motion (P = 0.29). Older adults had elevated thresholds for motion contrast (P < 0.001), biological motion (P < 0.001), and differences in surround suppression of motion (P = 0.04), relative to the younger group, for both the glare and no-glare conditions. CONCLUSIONS: Although older adults had elevated thresholds for some motion perception tasks, glare from a continuous off-axis light source did not further elevate these thresholds either in central or peripheral vision. TRANSLATIONAL RELEVANCE: A glare source that simulated the effect of oncoming headlights, did not impact motion perception measures relevant to driving.
  • Item
    Thumbnail Image
    Motion perception at mesopic light levels: effects of physiological ageing and eccentricity
    Sepulveda, JA ; Anderson, AJ ; Wood, JM ; McKendrick, AM (WILEY, 2021-03)
    PURPOSE: To explore the differential effects of age and eccentricity on the perception of motion at photopic and mesopic light levels. METHODS: Thirty-six visually normal participants (18 younger; mean age 25 years, range: 20-31) and (18 older; mean age 70 years, range: 60-79) underwent two testing sessions, one at photopic and one at mesopic light levels. In each session, motion perception was tested binocularly at two eccentricities (centrally, and peripherally at 15° rightwards and 5° superior to the horizontal) for four motion tasks: minimum contrast of a drifting Gabor to identify motion direction (motion contrast); translational global motion coherence; biological motion embedded in noise and the minimum duration of a high-contrast Gabor to determine the direction of motion, using two Gabor sizes to measure spatial surround suppression of motion. RESULTS: There was a significant main effect of light condition (higher thresholds in mesopic) for motion contrast (p < 0.001), translational global motion (p = 0.001) and biological motion (p < 0.001); a significant main effect of age (higher thresholds in older adults) for motion contrast (p < 0.001) and biological motion (p = 0.04) and a significant main effect of eccentricity (higher thresholds peripherally) for motion contrast (p < 0.001) and biological motion (p < 0.001). Additionally, we found a significant three-way interaction between light levels, age and eccentricity for translational global motion (similar increase in mesopic thresholds centrally for both groups, but a much larger deterioration in older adult's peripheral mesopic thresholds, p = 0.02). Finally, we found a two-way interaction between light condition and eccentricity for translational global motion (higher values in central mesopic relative to peripheral photopic, p = 0.001) and for biological motion (higher values in peripheral mesopic relative to central photopic, p < 0.001). CONCLUSIONS: For the majority of tasks assessed, motion perception was reduced in mesopic relative to photopic conditions, to a similar extent in both age groups. However, because some older adults exhibited elevated thresholds even under photopic conditions, particularly in the periphery, the ability to detect mesopic moving stimuli even at high contrast was markedly impaired in some individuals. Our results imply age-related differences in the detection of peripheral moving stimuli at night that might impact hazard avoidance and night driving ability.
  • Item
    Thumbnail Image
    Optic nerve tissue displacement during mild intraocular pressure elevation: its relationship to central corneal thickness and corneal hysteresis
    Bedggood, P ; Tanabe, F ; McKendrick, AM ; Turpin, A ; Anderson, AJ ; Bui, BV (WILEY, 2018-07)
    PURPOSE: To determine the extent to which (1) optic nerve tissue is displaced following mild acute elevation of intraocular pressure, and (2) clinically accessible measures at the anterior eye can be used as a surrogate for such displacements. METHODS: We imaged the optic disc of 21 healthy subjects before and after intraocular pressure (IOP) elevation of ~10 mmHg delivered by ophthalmodynamometry. Steady-state tissue displacement during IOP elevation was assessed axially from OCT data, and laterally from SLO data. Recovery from IOP elevation was assessed by tracking a single vertical B-scan through the cup centre. Anatomical structures were demarcated by three masked clinicians to determine lateral shifts for temporal cup edge and central disc vessels, and axial shifts of disc surface and anterior lamina cribrosa. Spatial maps of deformation were constructed within the demarcated cup and disc to assess within-tissue displacement. Measured displacements were correlated with corneal hysteresis, corneal thickness, and IOP. RESULTS: The temporal cup edge moved more temporally with higher baseline IOP (R2  = 0.33, p = 0.006) and with lesser elevation of IOP (R2  = 0.43, p = 0.001); it moved more superiorly for thinner corneas (R2  = 0.35, p = 0.007). Thinner corneas also produced less within-cup deformation, relative to that of the disc (R2  = 0.39, p = 0.004). Axial displacement of the lamina and lateral displacement of vessels were often substantial (lamina 20 ± 15 μm, range 1-60 μm; vessels 37 ± 25 μm, range 2-102 μm) but did not correlate with measured parameters. Recovery from IOP elevation did not take more than 300-400 ms in any subject. CONCLUSIONS: Mild acute elevation of IOP produces large and rapidly reversible shifts in optic nerve tissue in young, healthy eyes. The resulting degree, direction and spatial distribution of cup movement are associated with IOP status and corneal thickness, but not corneal hysteresis.
  • Item
    No Preview Available
    Central and peripheral motion perception under mesopic conditions in older adults
    Sepulveda, JA ; Anderson, AJ ; Wood, JM ; McKendrick, AM (Association for Research in Vision and Ophthalmology (ARVO), 2020-10-20)
  • Item
    Thumbnail Image
    Differential aging effects in motion perception tasks for central and peripheral vision
    Sepulveda, JA ; Anderson, AJ ; Wood, JM ; McKendrick, AM (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2020-05)
    The perception of motion is considered critical for performing everyday tasks, such as locomotion and driving, and relies on different levels of visual processing. However, it is unclear whether healthy aging differentially affects motion processing at specific levels of processing, or whether performance at central and peripheral spatial eccentricities is altered to the same extent. The aim of this study was to explore the effects of aging on hierarchically different components of motion processing: the minimum displacement of dots to perceive motion (Dmin), the minimum contrast and speed to determine the direction of motion, spatial surround suppression of motion, global motion coherence (translational and radial), and biological motion. We measured motion perception in both central vision and at 15° eccentricity, comparing performance in 20 older (60-79 years) and 20 younger (19-34 years) adults. Older adults had significantly elevated thresholds, relative to younger adults, for motion contrast, speed, Dmin, and biological motion. The differences between younger and older participants were of similar magnitude in central and peripheral vision, except for surround suppression of motion, which was weaker in central vision for the older group, but stronger in the periphery. Our findings demonstrate that the effects of aging are not uniform across all motion tasks. Whereas the performance of some tasks in the periphery can be predicted from the results in central vision, the effects of age on surround suppression of motion shows markedly different characteristics between central and peripheral vision.
  • Item
    Thumbnail Image
    Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss
    Brooks, CJ ; Chan, YM ; Anderson, AJ ; McKendrick, AM (FRONTIERS MEDIA SA, 2018-05-09)
    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information.
  • Item
    Thumbnail Image
    Do Intense Perimetric Stimuli Saturate the Healthy Visual System?
    Anderson, AJ ; McKendrick, AM ; Turpin, A (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-11)
    PURPOSE: A recent proposal for why glaucomatous perimetric sensitivities of approximately 15 to 19 dB or less are unreliable involves the idea that the neural response of normal retinal ganglion cells saturates for intense perimetric stimuli. A predicted consequence of this saturation is that the neural response for two different high intensity stimuli will be the same, leading to an inability to discriminate between them. We test that prediction. METHODS: We used a two-interval forced-choice method of constant stimuli (7 steps, 40 presentations/step) to measure the ability of four healthy observers to discriminate between different intensity Size III perimetric stimuli at 0°, 9°, and 21° eccentricity. The lower intensity stimulus for each discrimination was either 27, 23, 19, 15, or 11 dB (Humphrey Field Analyzer equivalents). RESULTS: Foveally, discrimination performance exceeded 90% for all observers provided the more intense stimulus was made sufficiently intense, even if the lower intensity stimulus in the pair was itself already intense (≤19 dB). The shapes of the curves were similar across all lower intensity stimulus values investigated. At 21°, discrimination performance exceeded 90% in three of the four observers despite the lower intensity stimulus being 19 dB. CONCLUSIONS: Observers can reliably discriminate between two different, but both very intense, perimetric stimuli, indicating that responses of the human visual system are not saturated by such stimuli. Therefore, the cause of high perimetric test-retest variability is not readily predicted from our current knowledge of how normal ganglion cells respond to high intensity stimuli.
  • Item
    Thumbnail Image
    The Effects of Ageing and Visual Field Loss on Pointing to Visual Targets
    Rubinstein, NJ ; Anderson, AJ ; Ma-Wyatt, A ; Walland, MJ ; McKendrick, AM ; Bex, P (PUBLIC LIBRARY SCIENCE, 2014-05-16)
    PURPOSE: To investigate the effect of ageing on visuomotor function and subsequently evaluate the effect of visual field loss on such function in older adults. METHODS: Two experiments were performed: 1) to determine the effect of ageing on visual localisation and subsequent pointing precision, and 2) to determine the effect of visual field loss on these outcome measures. For Experiment 1, we measured visual localisation and pointing precision radially at visual eccentricities of 5, 10 and 15° in 25 older (60-72 years) and 25 younger (20-31 years) adults. In the pointing task, participants were asked to point to a target on a touchscreen at a natural pace that prioritised accuracy of the touch. In Experiment 2, a subset of these tasks were performed at 15° eccentricity under both monocular and binocular conditions, by 8 glaucoma (55-76 years) and 10 approximately age-matched controls (61-72 years). RESULTS: Visual localisation and pointing precision was unaffected by ageing (p>0.05) and visual field loss (p>0.05), although movement time was increased in glaucoma (p = 0.01). CONCLUSION: Visual localisation and pointing precision to high contrast stimuli within the central 15° of vision are unaffected by ageing. Even in the presence of significant visual field loss, older adults with glaucoma are able perform such tasks with reasonable precision provided the target can be perceived and movement time is not restricted.