Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Conscious Wireless Electroretinogram and Visual Evoked Potentials in Rats
    Charng, J ; Nguyen, CT ; He, Z ; Dang, TM ; Vingrys, AJ ; Fish, RL ; Gurrell, R ; Brain, P ; Bui, BV ; Frishman, L (PUBLIC LIBRARY SCIENCE, 2013-09-12)
    The electroretinogram (ERG, retina) and visual evoked potential (VEP, brain) are widely used in vivo tools assaying the integrity of the visual pathway. Current recordings in preclinical models are conducted under anesthesia, which alters neural physiology and contaminates responses. We describe a conscious wireless ERG and VEP recording platform in rats. Using a novel surgical technique to chronically implant electrodes subconjunctivally on the eye and epidurally over the visual cortex, we are able to record stable and repeatable conscious ERG and VEP signals over at least 1 month. We show that the use of anaesthetics, necessary for conventional ERG and VEP measurements, alters electrophysiology recordings. Conscious visual electrophysiology improves the viability of longitudinal studies by eliminating complications associated with repeated anaesthesia. It will also enable uncontaminated assessment of drug effects, allowing the eye to be used as an effective biomarker of the central nervous system.
  • Item
    Thumbnail Image
    Coupling blood flow and neural function in the retina: a model for homeostatic responses to ocular perfusion pressure challenge
    He, Z ; Lim, JKH ; Nguyen, CTO ; Vingrys, AJ ; Bui, BV (WILEY, 2013-08)
    Retinal function is known to be more resistant than blood flow to acute reduction of ocular perfusion pressure (OPP). To understand the mechanisms underlying the disconnect between blood flow and neural function, a mathematical model is developed in this study, which proposes that increased oxygen extraction ratio compensates for relative ischemia to sustain retinal function. In addition, the model incorporates a term to account for a pressure-related mechanical stress on neurons when OPP reduction is achieved by intraocular pressure (IOP) elevation. We show that this model, combining ocular blood flow, oxygen extraction ratio, and IOP mechanical stress on neurons, accounts for retinal function over a wide range of OPP manipulations. The robustness of the model is tested against experimental data where ocular blood flow, oxygen tension, and retinal function were simultaneously measured during acute OPP manipulation. The model provides a basis for understanding the retinal hemodynamic responses to short-term OPP challenge.
  • Item
    Thumbnail Image
    Using the Electroretinogram to Understand How Intraocular Pressure Elevation Affects the Rat Retina
    Bui, BV ; He, Z ; Vingrys, AJ ; Nguyen, CTO ; Wong, VHY ; Fortune, B (HINDAWI LTD, 2013)
    Intraocular pressure (IOP) elevation is a key risk factor for glaucoma. Our understanding of the effect that IOP elevation has on the eye has been greatly enhanced by the application of the electroretinogram (ERG). In this paper, we describe how the ERG in the rodent eye is affected by changes in IOP magnitude, duration, and number of spikes. We consider how the variables of blood pressure and age can modify the effect of IOP elevation on the ERG. Finally, we contrast the effects that acute and chronic IOP elevation can have on the rodent ERG.