Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Implantation and Recording of Wireless Electroretinogram and Visual Evoked Potential in Conscious Rats
    Charng, J ; He, Z ; Bui, B ; Vingrys, A ; Ivarsson, M ; Fish, R ; Gurrell, R ; Nguyen, C (JOURNAL OF VISUALIZED EXPERIMENTS, 2016-06-01)
    The full-field electroretinogram (ERG) and visual evoked potential (VEP) are useful tools to assess retinal and visual pathway integrity in both laboratory and clinical settings. Currently, preclinical ERG and VEP measurements are performed with anesthesia to ensure stable electrode placements. However, the very presence of anesthesia has been shown to contaminate normal physiological responses. To overcome these anesthesia confounds, we develop a novel platform to assay ERG and VEP in conscious rats. Electrodes are surgically implanted sub-conjunctivally on the eye to assay the ERG and epidurally over the visual cortex to measure the VEP. A range of amplitude and sensitivity/timing parameters are assayed for both the ERG and VEP at increasing luminous energies. The ERG and VEP signals are shown to be stable and repeatable for at least 4 weeks post surgical implantation. This ability to record ERG and VEP signals without anesthesia confounds in the preclinical setting should provide superior translation to clinical data.
  • Item
    Thumbnail Image
    A Model of Glaucoma Induced by Circumlimbal Suture in Rats and Mice
    He, Z ; Zhao, D ; van Koeverden, AK ; Nguyen, CT ; Lim, JKH ; Wong, VHY ; Vingrys, AJ ; Bui, BV (Journal of Visualized Experiments, 2018)
    The circumlimbal suture is a technique for inducing experimental glaucoma in rodents by chronically elevating intraocular pressure (IOP), a well-known risk factor for glaucoma. This protocol demonstrates a step-by-step guide on this technique in Long Evans rats and C57BL/6 mice. Under general anesthesia, a "purse-string" suture is applied on the conjunctiva, around the equator and behind the limbus of the eye. The fellow eye serves as an untreated control. Over the duration of our study, which was a period of 8 weeks for rats and 12 weeks for mice, IOP remained elevated, as measured regularly by rebound tonometry in conscious animals without topical anesthesia. In both species, the sutured eyes showed electroretinogram features consistent with preferential inner retinal dysfunction. Optical coherence tomography showed selective thinning of the retinal nerve fiber layer. Histology of the rat retina in cross-section found reduced cell density in the ganglion cell layer, but no change in other cellular layers. Staining of flat-mounted mouse retinae with a ganglion cell specific marker (RBPMS) confirmed ganglion cell loss. The circumlimbal suture is a simple, minimally invasive and cost-effective way to induce ocular hypertension that leads to ganglion cell injury in both rats and mice.
  • Item
    Thumbnail Image
    Reversal of functional loss in a rat model of chronic intraocular pressure elevation
    Liu, H-H ; He, Z ; Nguyen, CTO ; Vingrys, AJ ; Bui, BV (WILEY, 2017-01)
    PURPOSE: This pilot study considered whether intraocular pressure (IOP) lowering could reverse ganglion cell dysfunction in a rat model of chronic ocular hypertension. METHODS: A circumlimbal suture was applied in one eye to induce ocular hypertension (n = 7) in Long-Evans rats. The contralateral eye served as an untreated control. After 8 weeks of IOP elevation the suture was removed to lower IOP for the remaining 7 weeks. Electroretinogram (ERG) and optical coherence tomography (OCT) were measured at baseline, 2, 4, 8, 12 and 15 weeks. Retinae were collected for histology at week 15. RESULTS: In sutured eyes, IOP was elevated by 7-11 mmHg above control eyes (12 ± 0.2 mmHg [standard error of the mean]). Eight weeks of chronic IOP elevation resulted in a reduction of the ganglion cell mediated positive Scotopic Threshold Response (pSTR, -25 ± 7% of baseline), as well as smaller photoreceptor (-7 ± 4%) and bipolar cell mediated responses (-6 ± 5%). After suture removal, IOP recovered to normal. By 15 weeks the a-wave (0 ± 6%), b-wave (-2 ± 6%) and pSTR had recovered back to baseline (from -25 ± 7% to -4 ± 6%). The retinal nerve fiber layer was thinned by -9 ± 3% at week 8 and showed no further decline at week 15 (-10 ± 2%). Cell numbers in the ganglion cell layer were similar between suture removal and control eyes at week 15 (3543 ± 478 vs 4057 ± 476 cells mm-2 ). CONCLUSIONS: The circumlimbal suture model might be a useful platform to study the reversibility of neuronal dysfunction from chronic IOP challenge.
  • Item
    Thumbnail Image
    Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer's Disease
    Lim, JKH ; Li, Q-X ; He, Z ; Vingrys, AJ ; Chinnery, HR ; Mullen, J ; Bui, BV ; Nguyen, CTO (FRONTIERS MEDIA SA, 2020-08-13)
    Alzheimer's disease is characterized by the aberrant deposition of protein in the brain and is the leading cause of dementia worldwide. Increasingly, there have been reports of the presence of these protein hallmarks in the retina. In this study, we assayed the retina of 5xFAD mice, a transgenic model of amyloid deposition known to exhibit dementia-like symptoms with age. Using OCT, we found that the retinal nerve fiber layer was thinner in 5xFAD at 6, 12, and 17 months of age compared with wild-type littermates, but the inner plexiform layer was thicker at 6 months old. Retinal function showed reduced ganglion cell responses to light in 5xFAD at 6, 12, and 17 months of age. This functional loss was observed in the outer retina at 17 months of age but not in younger mice. We showed using immunohistochemistry and ELISA that soluble and insoluble amyloid was present in the retina and brain at all ages. In conclusion, we report that amyloid is present in brain and retina of 5xFAD mice and that the pattern of neuronal dysfunction occurs in the inner retina at the early ages and progresses to encompass the outer retina with age. This implies that the inner retina is more sensitive to amyloid changes in early disease and that the outer retina is also affected with disease progression.
  • Item
    Thumbnail Image
    Conscious Wireless Electroretinogram and Visual Evoked Potentials in Rats
    Charng, J ; Nguyen, CT ; He, Z ; Dang, TM ; Vingrys, AJ ; Fish, RL ; Gurrell, R ; Brain, P ; Bui, BV ; Frishman, L (PUBLIC LIBRARY SCIENCE, 2013-09-12)
    The electroretinogram (ERG, retina) and visual evoked potential (VEP, brain) are widely used in vivo tools assaying the integrity of the visual pathway. Current recordings in preclinical models are conducted under anesthesia, which alters neural physiology and contaminates responses. We describe a conscious wireless ERG and VEP recording platform in rats. Using a novel surgical technique to chronically implant electrodes subconjunctivally on the eye and epidurally over the visual cortex, we are able to record stable and repeatable conscious ERG and VEP signals over at least 1 month. We show that the use of anaesthetics, necessary for conventional ERG and VEP measurements, alters electrophysiology recordings. Conscious visual electrophysiology improves the viability of longitudinal studies by eliminating complications associated with repeated anaesthesia. It will also enable uncontaminated assessment of drug effects, allowing the eye to be used as an effective biomarker of the central nervous system.
  • Item
    Thumbnail Image
    Systemic hypertension is not protective against chronic intraocular pressure elevation in a rodent model
    van Koeverden, AK ; He, Z ; Nguyen, CTO ; Vingrys, AJ ; Bui, BV (NATURE PUBLISHING GROUP, 2018-05-08)
    High intraocular pressure is the most well documented glaucoma risk factor; however many patients develop and/or show progression of glaucoma in its absence. It is now thought that in some instances, ocular perfusion pressure (blood pressure - intraocular pressure) may be as important as intraocular pressure alone. Thus, systemic hypertension would be protective against glaucoma. Epidemiological studies, however, are inconclusive. One theory of why hypertension may not protect against elevated intraocular pressure in spite of increasing ocular perfusion pressure is that with time, morphological changes to the vasculature and autoregulatory failure outweigh the benefits of improved perfusion pressure, ultimately leading to poor retinal and optic nerve head blood supply. In this study we showed the presence of increased wall:lumen ratio and wall area of the ophthalmic artery in rats with chronic hypertension in addition to failure of retinal autoregulation in response to acute modification of ocular perfusion pressure. Subsequently we found that in spite of dramatically increasing ocular perfusion pressure, chronic systemic hypertension failed to protect retinal structure and function from a rodent model of glaucoma.
  • Item
    Thumbnail Image
    Age-related changes in the response of retinal structure, function and blood flow to pressure modification in rats
    Zhao, D ; Nguyen, CTO ; He, Z ; Wong, VHY ; van Koeverden, AK ; Vingrys, AJ ; Bui, BV (NATURE PORTFOLIO, 2018-02-13)
    Age-related changes to the balance between the pressure inside the eye (intraocular pressure, IOP) and the pressure inside the brain (intracranial pressure, ICP) can modify the risk of glaucoma. In this study, we consider whether the optic nerve in older rat eyes is more susceptible to acute IOP and ICP modification. We systematically manipulate both ICP and IOP and quantify their effects on ganglion cell function (electroretinography, ERG), optic nerve structure (optical coherence tomography, OCT) and retinal blood flow (Doppler OCT). We show that ganglion cell function in older eyes was more susceptible to a higher optic nerve pressure difference (ONPD = IOP - ICP). This age-related susceptibility could not be explained by poorer blood flow with elevated ONPD. Rather, as ONPD increased the retinal nerve fibre layer showed greater compression, and the retinal surface showed less deformation in older eyes. Our data suggest that age-related changes to connective tissues in and around the rat optic nerve make it less flexible, which may result in greater strain on ganglion cell axons. This may account for greater functional susceptibility to higher optic nerve pressure differences in older rat eyes. Further studies in a species with a well-developed lamina cribrosa are needed to determine the clinical importance of these observations.
  • Item
    Thumbnail Image
    Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels.
    Zhao, D ; Nguyen, CTO ; Wong, VHY ; Lim, JKH ; He, Z ; Jobling, AI ; Fletcher, EL ; Chinnery, HR ; Vingrys, AJ ; Bui, BV (Frontiers Media SA, 2017)
    To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (-15 ± 4%), bipolar cell (-15 ± 4%) and ganglion cell responses (-19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior -12 ± 5%; temporal, -7% ± 2%; inferior -9 ± 4%; nasal -8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.
  • Item
    Thumbnail Image
    Retinal and Cortical Blood Flow Dynamics Following Systemic Blood-Neural Barrier Disruption
    Hui, F ; Nguyen, CTO ; He, Z ; Vingrys, AJ ; Gurrell, R ; Fish, RL ; Bui, BV (FRONTIERS MEDIA SA, 2017-10-12)
    To consider whether imaging retinal vasculature may be used as a marker for cortical vessels, we compared fluorescein angiography flow dynamics before and after pharmacological disruption of blood-neural barriers. Sodium fluorescein (1%, 200 μl/kg) was intravenously delivered in anesthetized adult Long Evans rats (n = 44, brain = 18, retina = 26). In the brain cohort, a cranial window was created to allow direct visualization of surface cortical vessels. Video fluorescein angiography was captured using a rodent retinal camera at 30 frames/second and fluorescence intensity profiles were evaluated for the time to reach 50% brightness (half-rise), 50% decay (half-fall), and the plateau level of remnant fluorescence (offset, %). Cortical vessels fluoresced earlier (artery half-rise: 5.6 ± 0.2 s) and decayed faster (half-fall: 10.3 ± 0.2 s) compared to retinal vasculature. Cortical vessels also had a considerably higher offset, particularly in the capillaries/extravascular space (41.4 ± 2.7%) whereas pigment in the retina reduces such residual fluorescence. In a sub-cohort of animals, sodium deoxycholate (DOC, 0.06 M dissolved in sterile saline, 1 mL) was delivered intravenously to cause simultaneous disruption of the blood-brain and blood-retinal barriers. A separate group received saline as vehicle control. Fluorescein angiography was re-measured at 6 and 24 h after drug infusion and evaluated by comparing flow dynamics to the upper quartile (75%) of the control group. Retinal vasculature was more sensitive to DOC-induced disruption with a higher fluorescence offset at 6 h (47.3 ± 10.6%). A delayed effect was seen in cortical vessels with a higher offset evident only at 24 h (65.6 ± 10.1%). Here we have developed a method to quantitatively compare fluorescein angiography dynamics in the retina and superficial cortical vessels. Our results show that systemic disruption of blood-neural barriers causes vascular leakage in both tissues but earlier in the retina suggesting that pharmacological blood-neural barrier disruption may be detected earlier in the eye than in cortical vasculature.
  • Item
    No Preview Available
    Chronic Hypertension Increases Susceptibility to Acute IOP Challenge in Rats
    He, Z ; Vingrys, AJ ; Armitage, JA ; Nguyen, CT ; Bui, BV (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2014-12)
    PURPOSE: To consider the effect of chronic arterial hypertension on the susceptibility of the retina to acute IOP challenge. METHODS: Anesthetized adult Long-Evans rats with normal (n = 5, receiving saline subcutaneously), chronic high blood pressure (BP) for 4 weeks (n = 15, Angiotensin II subcutaneously), and acute high BP for 1 hour (n = 10, Angiotensin II intravenously) underwent IOP elevation (10-120 mm Hg, 5 mm Hg steps each 3 minutes). During IOP elevation, retinal function and ocular blood flow were monitored with electroretinogram (ERG) and laser-Doppler flowmetry (LDF), respectively. Blood pressure was monitored via a femoral artery cannula. Electroretinogram and LDF responses are expressed as a percentage of baseline and compared between groups. The left ventricle and the aorta were dissected to assess the morphologic changes associated with chronic hypertension. RESULTS: Four weeks of hypertension (systolic BP 192 ± 4 mm Hg) produced cardiac hypertrophy and thickened aortic arterial walls compared with controls (systolic BP 112 ± 3 mm Hg). Retinal function was unaltered with chronic hypertension compared with normotensive animals. During acute IOP elevation, ERG and LDF were reduced in a dose-dependent manner in all BP groups. Both chronic and acute hypertension made the ERG and LDF less susceptible to IOP elevation. However, the degree of resistance to IOP elevation was greater in acute hypertension compared with chronic hypertension (P < 0.05). CONCLUSIONS: Acute BP elevation makes retinal function and blood flow less susceptible to IOP elevation. The reduced susceptibility afforded by improved ocular perfusion pressure is compromised after 4 weeks of chronic hypertension.