Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Identifying Cell Class Specific Losses from Serially Generated Electroretinogram Components
    Nguyen, CTO ; Vingrys, AJ ; Wong, VHY ; Bui, BV (HINDAWI LTD, 2013-01-01)
    PURPOSE: Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from "upstream" neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. METHODS: Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. RESULTS: The PIII(amp) to PII(amp) gain is unity whereas the PII(amp) to pSTR(amp) and PII(amp) to nSTR(amp) gains are greater than unity, indicating "amplification" (P < 0.05). Timing relationships show amplification between PIII(it) to PII(it) and compression for PII(it) to pSTR(it) and PII(it) to nSTR(it), (P < 0.05). Application of these gains to ω-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P < 0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P < 0.05). CONCLUSIONS: This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
  • Item
    Thumbnail Image
    Functional Changes in the Retina during and after Acute Intraocular Pressure Elevation in Mice
    Kong, YX ; Crowston, JG ; Vingrys, AJ ; Trounce, IA ; Bui, BV (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2009-12-01)
    PURPOSE: To examine retinal function using the full-field electroretinogram (ERG) during and after acute intraocular pressure (IOP) elevation in wild-type mice. METHODS: IOP was elevated by anterior chamber cannulation in wild-type C57/BL6 mice. The pressure-function relationship was determined by IOP elevation in steps from baseline to 80 mm Hg. The rate of functional recovery was assessed for 60 minutes after an IOP spike of 50 mm Hg for 30 minutes. During and immediately after IOP elevation, scotopic ERG signals were recorded in response to dim and bright flashes (-4.54, -2.23, and 0.34 log cd x s x m(-2)) and analyzed for photoreceptoral (a-wave), ON-bipolar (b-wave), oscillatory potentials (OPs), and scotopic threshold responses (positive [p]STR/negative [n] STR). A full ERG protocol was collected 2 days before and 7 days after the single 50-mm Hg IOP spike. RESULTS: The pSTR was most sensitive to IOP elevation with 50% amplitude loss (mu) at 41 mm Hg (mu, 95% confidence limits (CL): 37.7, 45.6) followed by nSTR at 45 mm Hg (95% CL: 41.0, 49.1). pSTR was significantly more sensitive than the b-wave (95% CL: 41.4, 49.1), a-wave (95% CL: 47.6, 55.3), and OPs (95% CL: 49.6, 59.2). pSTR showed slower recovery immediately after the 50 mm Hg spike compared with the b-wave (P = 0.02). One week after the 50-mm Hg spike, pSTR (-30% +/- 6%, P < 0.001) and OP (-27% +/- 2%, P < 0.001) amplitudes were reduced, whereas other components were unaffected. CONCLUSIONS: The STR in mice is more sensitive to acute IOP elevation and recovers slower than other ERG components. Reduction in pSTR and OP amplitude at 1 week suggests persistent impairment of inner retinal function can occur after a single IOP spike.