Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    MicroRNA-143 plays a protective role in ischemia-induced retinal neovascularization
    Wang, J-H ; Chen, J ; Ling, D ; Tu, L ; Singh, V ; Riaz, M ; Li, F ; Prea, SM ; He, Z ; Bui, BV ; Hewitt, AW ; van Wijngaarden, P ; Dusting, GJ ; Liu, G-S ( 2019-02-13)
    Retinal neovascularization is a severe complication of proliferative diabetic retinopathy. MicroRNAs (miRNAs) are master regulators of gene expression that play important roles in retinal neovascularization. Here, we investigated the retinal miRNA expression profile in a rat model of oxygen-induced retinopathy (OIR) through miRNA-Seq. We found that miR-143-3p, miR-126-3p, miR-150-5p and miR-145-5p were significantly down-regulated in the retina of OIR rats, and directly involved in the development of retinal neovascularization. Of these identified miRNAs, miR-143 is enriched in retina and was first reported being associated with pathological retinal angiogenesis. Our RNA-Seq data further suggested that miR-143 alleviates retinal neovascularization by mediating the inflammation/stress pathways via Fos. Moreover, the computational analysis indicated that Transforming Growth Factor-beta Activated Kinase 1 (TAK1) is involved in several key pathways associated with the dysregulated miRNAs. The pharmacological inhibition of TAK1 suppressed angiogenesis in vitro and retinal neovascularization in vivo. Our data highlight the utility of next-generation sequencing in the development of therapeutics for ocular neovascularization and further suggest that therapeutic targeting the dysregulated miRNAs or TAK1 may be a feasible adjunct therapeutic approach in patients with retinal neovascularization.
  • Item
    Thumbnail Image
    Progressive impairments in executive function in the APP/PS1 model of Alzheimer’s disease as measured by translatable touchscreen testing
    Shepherd, A ; Lim, JKH ; Wong, VHY ; Zeleznikow-Johnston, AM ; Churilov, L ; Nguyen, CTO ; Bui, BV ; Hannan, AJ ; Burrows, EL ( 2019-08-21)
    Executive function deficits in Alzheimer’s disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APP/PS1 mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.