Optometry and Vision Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Preferential modulation of individual retinal ganglion cells by electrical stimulation
    Yunzab, M ; Soto-Breceda, A ; Maturana, M ; Kirkby, S ; Slattery, M ; Newgreen, A ; Meffin, H ; Kameneva, T ; Burkitt, AN ; Ibbotson, M ; Tong, W (IOP Publishing Ltd, 2022-08-01)
    Objective.Retinal prostheses have had limited success in vision restoration through electrical stimulation of surviving retinal ganglion cells (RGCs) in the degenerated retina. This is partly due to non-preferential stimulation of all RGCs near a single stimulating electrode, which include cells that conflict in their response properties and their contribution to visiual processing. Our study proposes a stimulation strategy to preferentially stimulate individual RGCs based on their temporal electrical receptive fields (tERFs).Approach.We recorded the responses of RGCs using whole-cell patch clamping and demonstrated the stimulation strategy, first using intracellular stimulation, then via extracellular stimulation.Main results. We successfully reconstructed the tERFs according to the RGC response to Gaussian white noise current stimulation. The characteristics of the tERFs were extracted and compared based on the morphological and light response types of the cells. By re-delivering stimulation trains that were composed of the tERFs obtained from different cells, we could preferentially stimulate individual RGCs as the cells showed lower activation thresholds to their own tERFs.Significance.This proposed stimulation strategy implemented in the next generation of recording and stimulating retinal prostheses may improve the quality of artificial vision.
  • Item
    Thumbnail Image
    High Fidelity Bidirectional Neural Interfacing with Carbon Fiber Microelectrodes Coated with Boron-Doped Carbon Nanowalls: An Acute Study
    Hejazi, MA ; Tong, W ; Stacey, A ; Sun, SH ; Yunzab, M ; Almasi, A ; Jung, YJ ; Meffin, H ; Fox, K ; Edalati, K ; Nadarajah, A ; Prawer, S ; Ibbotson, MR ; Garrett, DJ (WILEY-V C H VERLAG GMBH, 2020-12)
    Abstract Implantable electrodes that can communicate with a small, selective group of neurons via both neural stimulation and recording are critical for the development of advanced neuroprosthetic devices. Microfiber electrodes with neuron‐scale cross‐sections have the potential to improve the spatial resolution for both stimulation and recording, while minimizing the chronic inflammation response after implantation. In this work, glass insulated microfiber electrodes are fabricated by coating carbon fibers with boron‐doped carbon nanowalls. The coating significantly improves the electrochemical properties of carbon fibers, leading to a charge injection capacity of 7.82  ± 0.35 mC cm−2, while retaining good flexibility, stability and biocompatibility. When used for neural interfacing, the coated microelectrodes successfully elicit localized stimulation responses in explanted retina, and are also able to detect signals from single neurons, in vivo with a signal‐to‐noise ratio as high as 6.7 in an acute study. This is the first report of using carbon nanowall coated carbon fibers for neural interfacing.
  • Item
    Thumbnail Image
    Hybrid diamond/ carbon fiber microelectrodes enable multimodal electrical/chemical neural interfacing
    Hejazi, MA ; Tong, W ; Stacey, A ; Soto-Breceda, A ; Ibbotson, MR ; Yunzab, M ; Maturana, MI ; Almasi, A ; Jung, YJ ; Sun, S ; Meffin, H ; Fang, J ; Stamp, MEM ; Ganesan, K ; Fox, K ; Rifai, A ; Nadarajah, A ; Falahatdoost, S ; Prawer, S ; Apollo, NV ; Garrett, DJ (Elsevier, 2020-02-01)
    Implantable medical devices are now in regular use to treat or ameliorate medical conditions, including movement disorders, chronic pain, cardiac arrhythmias, and hearing or vision loss. Aside from offering alternatives to pharmaceuticals, one major advantage of device therapy is the potential to monitor treatment efficacy, disease progression, and perhaps begin to uncover elusive mechanisms of diseases pathology. In an ideal system, neural stimulation, neural recording, and electrochemical sensing would be conducted by the same electrode in the same anatomical region. Carbon fiber (CF) microelectrodes are the appropriate size to achieve this goal and have shown excellent performance, in vivo. Their electrochemical properties, however, are not suitable for neural stimulation and electrochemical sensing. Here, we present a method to deposit high surface area conducting diamond on CF microelectrodes. This unique hybrid microelectrode is capable of recording single-neuron action potentials, delivering effective electrical stimulation pulses, and exhibits excellent electrochemical dopamine detection. Such electrodes are needed for the next generation of miniaturized, closed-loop implants that can self-tune therapies by monitoring both electrophysiological and biochemical biomarkers.
  • Item
    Thumbnail Image
    Stimulation Strategies for Improving the Resolution of Retinal Prostheses.
    Tong, W ; Meffin, H ; Garrett, DJ ; Ibbotson, MR (Frontiers Media, 2020-03-26)
    Electrical stimulation using implantable devices with arrays of stimulating electrodes is an emerging therapy for neurological diseases. The performance of these devices depends greatly on their ability to activate populations of neurons with high spatiotemporal resolution. To study electrical stimulation of populations of neurons, retina serves as a useful model because the neural network is arranged in a planar array that is easy to access. Moreover, retinal prostheses are under development to restore vision by replacing the function of damaged light sensitive photoreceptors, which makes retinal research directly relevant for curing blindness. Here we provide a progress review on stimulation strategies developed in recent years to improve the resolution of electrical stimulation in retinal prostheses. We focus on studies performed with explanted retinas, in which electrophysiological techniques are the most advanced. We summarize achievements in improving the spatial and temporal resolution of electrical stimulation of the retina and methods to selectively stimulate neurons with different visual functions. Future directions for retinal prostheses development are also discussed, which could provide insights for other types of neuromodulatory devices in which high-resolution electrical stimulation is required.