Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Treating Alzheimer's disease by targeting iron
    Nikseresht, S ; Bush, A ; Ayton, S (WILEY, 2019-09)
    No disease modifying drugs have been approved for Alzheimer's disease despite recent major investments by industry and governments throughout the world. The burden of Alzheimer's disease is becoming increasingly unsustainable, and given the last decade of clinical trial failures, a renewed understanding of the disease mechanism is called for, and trialling of new therapeutic approaches to slow disease progression is warranted. Here, we review the evidence and rational for targeting brain iron in Alzheimer's disease. Although iron elevation in Alzheimer's disease was reported in the 1950s, renewed interest has been stimulated by the advancement of fluid and imaging biomarkers of brain iron that predict disease progression, and the recent discovery of the iron-dependent cell death pathway termed ferroptosis. We review these emerging clinical and biochemical findings and propose how this pathway may be targeted therapeutically to slow Alzheimer's disease progression. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
  • Item
    Thumbnail Image
    Tau-mediated iron export prevents ferroptotic damage after ischemic stroke
    Tuo, Q-Z ; Lei, P ; Jackman, KA ; Li, X-I ; Xiong, H ; Li, X-L ; Liuyang, Z-Y ; Roisman, L ; Zhang, S-T ; Ayton, S ; Wang, Q ; Crouch, PJ ; Ganio, K ; Wang, X-C ; Pei, L ; Adlard, PA ; Lu, Y-M ; Cappai, R ; Wang, J-Z ; Liu, R ; Bush, AI (NATURE PUBLISHING GROUP, 2017-11)
    Functional failure of tau contributes to age-dependent, iron-mediated neurotoxicity, and as iron accumulates in ischemic stroke tissue, we hypothesized that tau failure may exaggerate ischemia-reperfusion-related toxicity. Indeed, unilateral, transient middle cerebral artery occlusion (MCAO) suppressed hemispheric tau and increased iron levels in young (3-month-old) mice and rats. Wild-type mice were protected by iron-targeted interventions: ceruloplasmin and amyloid precursor protein ectodomain, as well as ferroptosis inhibitors. At this age, tau-knockout mice did not express elevated brain iron and were protected against hemispheric reperfusion injury following MCAO, indicating that tau suppression may prevent ferroptosis. However, the accelerated age-dependent brain iron accumulation that occurs in tau-knockout mice at 12 months of age negated the protective benefit of tau suppression against MCAO-induced focal cerebral ischemia-reperfusion injury. The protective benefit of tau knockout was revived in older mice by iron-targeting interventions. These findings introduce tau-iron interaction as a pleiotropic modulator of ferroptosis and ischemic stroke outcome.