Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Rosiglitazone is a superior bronchodilator compared to chloroquine and β-adrenoceptor agonists in mouse lung slices
    Donovan, C ; Simoons, M ; Esposito, J ; Cheong, JN ; FitzPatrick, M ; Bourke, JE (BMC, 2014-03-12)
    BACKGROUND: Current therapy for relieving bronchoconstriction may be ineffective in severe asthma, particularly in the small airways. The aim of this study was to further characterise responses to the recently identified novel bronchodilators rosiglitazone (RGZ) and chloroquine (CQ) under conditions where β-adrenoceptor agonist efficacy was limited or impaired in mouse small airways within lung slices. METHODS: Relaxation to RGZ and CQ was assessed following submaximal methacholine (MCh) pre-contraction, in slices treated overnight with either RGZ, CQ or albuterol (ALB) (to induce β-adrenoceptor desensitization), and in slices treated with caffeine/ryanodine in which contraction is associated with increases in Ca2+ sensitivity in the absence of contractile agonist-induced Ca2+ oscillations. Furthermore, the effects of RGZ, CQ, ALB and isoproterenol (ISO) on the initiation and development of methacholine-induced contraction were also compared. RESULTS: RGZ and CQ, but not ALB or ISO, elicited complete relaxation with increasing MCh pre-contraction and maintained their potency and efficacy following β-adrenoceptor desensitization. RGZ, CQ and ALB maintained efficacy following overnight incubation with RGZ or CQ. Relaxation responses to all dilators were generally maintained but delayed after caffeine/ryanodine. Pre-treatment with RGZ, but not CQ, ALB or ISO, reduced MCh potency. CONCLUSIONS: This study demonstrates the superior effectiveness of RGZ in comparison to CQ and β-adrenoceptor agonists as a dilator of mouse small airways. Further investigation of the mechanisms underlying the relatively greater efficacy of RGZ under these conditions are warranted and should be extended to include studies in human asthmatic airways.
  • Item
    Thumbnail Image
    Influenza A virus infection and cigarette smoke impair bronchodilator responsiveness to β-adrenoceptor agonists in mouse lung
    Donovan, C ; Seow, HJ ; Bourke, JE ; Vlahos, R (PORTLAND PRESS LTD, 2016-05-01)
    β2-adrenoceptor agonists are the mainstay therapy for patients with asthma but their effectiveness in cigarette smoke (CS)-induced lung disease such as chronic obstructive pulmonary disease (COPD) is limited. In addition, bronchodilator efficacy of β2-adrenoceptor agonists is decreased during acute exacerbations of COPD (AECOPD), caused by respiratory viruses including influenza A. Therefore, the aim of the present study was to assess the effects of the β2-adrenoceptor agonist salbutamol (SALB) on small airway reactivity using mouse precision cut lung slices (PCLS) prepared from CS-exposed mice and from CS-exposed mice treated with influenza A virus (Mem71, H3N1). CS exposure alone reduced SALB potency and efficacy associated with decreased β2-adrenoceptor mRNA expression, and increased tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) expression. This impaired relaxation was restored by day 12 in the absence of further CS exposure. In PCLS prepared after Mem71 infection alone, responses to SALB were transient and were not well maintained. CS exposure prior to Mem71 infection almost completely abolished relaxation, although β2-adrenoceptor and TNFα and IL-1β expression were unaltered. The present study has shown decreased sensitivity to SALB after CS or a combination of CS and Mem71 occurs by different mechanisms. In addition, the PCLS technique and our models of CS and influenza infection provide a novel setting for assessment of alternative bronchodilators.
  • Item
    No Preview Available
    Rosiglitazone elicits in vitro relaxation in airways and precision cut lung slices from a mouse model of chronic allergic airways disease
    Donovan, C ; Bailey, SR ; Tran, J ; Haitsma, G ; Ibrahim, ZA ; Foster, SR ; Tang, MLK ; Royce, SG ; Bourke, JE (AMER PHYSIOLOGICAL SOC, 2015-11-15)
    Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor-γ (PPARγ) ligand, is a novel dilator of small airways in mouse precision cut lung slices (PCLS). In this study, relaxation to RGZ and β-adrenoceptor agonists were compared in trachea from naïve mice and guinea pigs and trachea and PCLS from a mouse model of chronic allergic airways disease (AAD). Airways were precontracted with methacholine before addition of PPARγ ligands [RGZ, ciglitazone (CGZ), or 15-deoxy-(Δ12,14)-prostaglandin J2 (15-deoxy-PGJ2)] or β-adrenoceptor agonists (isoprenaline and salbutamol). The effects of T0070907 and GW9662 (PPARγ antagonists) or epithelial removal on relaxation were assessed. Changes in force of trachea and lumen area in PCLS were measured using preparations from saline-challenged mice and mice sensitized (days 0 and 14) and challenged with ovalbumin (3 times/wk, 6 wk). RGZ and CGZ elicited complete relaxation with greater efficacy than β-adrenoceptor agonists in mouse airways but not guinea pig trachea, while 15-deoxy-PGJ2 did not mediate bronchodilation. Relaxation to RGZ was not prevented by T0070907 or GW9662 or by epithelial removal. RGZ-induced relaxation was preserved in the trachea and increased in PCLS after ovalbumin-challenge. Although RGZ was less potent than β-adrenoceptor agonists, its effects were additive with salbutamol and isoprenaline and only RGZ maintained potency and full efficacy in maximally contracted airways or after allergen challenge. Acute PPARγ-independent, epithelial-independent airway relaxation to RGZ is resistant to functional antagonism and maintained in both trachea and PCLS from a model of chronic AAD. These novel efficacious actions of RGZ support its therapeutic potential in asthma when responsiveness to β-adrenoceptor agonists is limited.
  • Item
    No Preview Available
    Novel Small Airway Bronchodilator Responses to Rosiglitazone in Mouse Lung Slices
    Bourke, JE ; Bai, Y ; Donovan, C ; Esposito, JG ; Tan, X ; Sanderson, MJ (AMER THORACIC SOC, 2014-04)
    There is a need to identify novel agents that elicit small airway relaxation when β2-adrenoceptor agonists become ineffective in difficult-to-treat asthma. Because chronic treatment with the synthetic peroxisome proliferator activated receptor (PPAR)γ agonist rosiglitazone (RGZ) inhibits airway hyperresponsiveness in mouse models of allergic airways disease, we tested the hypothesis that RGZ causes acute airway relaxation by measuring changes in small airway size in mouse lung slices. Whereas the β-adrenoceptor agonists albuterol (ALB) and isoproterenol induced partial airway relaxation, RGZ reversed submaximal and maximal contraction to methacholine (MCh) and was similarly effective after precontraction with serotonin or endothelin-1. Concentration-dependent relaxation to RGZ was not altered by the β-adrenoceptor antagonist propranolol and was enhanced by ALB. RGZ-induced relaxation was mimicked by other synthetic PPARγ agonists but not by the putative endogenous agonist 15-deoxy-PGJ2 and was not prevented by the PPARγ antagonist GW9662. To induce airway relaxation, RGZ inhibited the amplitude and frequency of MCh-induced Ca(2+) oscillations of airway smooth muscle cells (ASMCs). In addition, RGZ reduced MCh-induced Ca(2+) sensitivity of the ASMCs. Collectively, these findings demonstrate that acute bronchodilator responses induced by RGZ are PPARγ independent, additive with ALB, and occur by the inhibition of ASMC Ca(2+) signaling and Ca(2+) sensitivity. Because RGZ continues to elicit relaxation when β-adrenoceptor agonists have a limited effect, RGZ or related compounds may have potential as bronchodilators for the treatment of difficult asthma.