Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The impact of backbone N-methylation on the structure-activity relationship of Leu10-teixobactin
    Velkov, T ; Swarbrick, JD ; Hussein, MH ; Schneider-Futschik, EK ; Hoyer, D ; Li, J ; Karas, JA (WILEY, 2019-09)
    Antimicrobial resistance is a serious threat to global human health; therefore, new anti-infective therapeutics are required. The cyclic depsi-peptide teixobactin exhibits potent antimicrobial activity against several Gram-positive pathogens. To study the natural product's mechanism of action and improve its pharmacological properties, efficient chemical methods for preparing teixobactin analogues are required to expedite structure-activity relationship studies. Described herein is a synthetic route that enables rapid access to analogues. Furthermore, our new N-methylated analogues highlight that hydrogen bonding along the N-terminal tail is likely to be important for antimicrobial activity.
  • Item
    Thumbnail Image
    The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites
    Schneider, EK ; McQuade, RM ; Carbone, VC ; Reyes-Ortega, F ; Wilson, JW ; Button, B ; Saito, A ; Poole, DP ; Hoyer, D ; Li, J ; Velkov, T (EUROPEAN RESPIRATORY SOC JOURNALS LTD, 2018-01-01)
    Ivacaftor-lumacaftor and ivacaftor are two new breakthrough cystic fibrosis transmembrane conductance modulators. The interactions of ivacaftor and its two metabolites hydroxymethylivacaftor (iva-M1) and ivacaftorcarboxylate (iva-M6) with neurotransmitter receptors were investigated in radioligand binding assays. Ivacaftor displayed significant affinity to the 5-hydroxytryptamine (5-HT; serotonin) 5-HT2C receptor (pKi=6.06±0.03), β3-adrenergic receptor (pKi=5.71±0.07), δ-opioid receptor (pKi=5.59±0.06) and the dopamine transporter (pKi=5.50±0.20); iva-M1 displayed significant affinity to the 5-HT2C receptor (pKi=5.81±0.04) and the muscarinic M3 receptor (pKi=5.70±0.10); iva-M6 displayed significant affinity to the 5-HT2A receptor (pKi=7.33±0.05). The in vivo central nervous system activity of ivacaftor (40 mg·kg-1 intraperitoneally for 21 days) was assessed in a chronic mouse model of depression. In the forced swim test, the ivacaftor-treated group displayed decreased immobility (52.8±7.6 s), similarly to fluoxetine (33.8±11.0 s), and increased climbing/swimming activity (181.5±9.2 s). In the open field test, ivacaftor produced higher locomotor activity than the fluoxetine group, measured both as mean number of paw touches (ivacaftor 81.1±9.6 versus fluoxetine 57.9±9.5) and total distance travelled (ivacaftor 120.6±16.8 cm versus fluoxetine 84.5±16.0 cm) in 600 s. Treatment of 23 cystic fibrosis patients with ivacaftor-lumacaftor resulted in significant improvements in quality of life (including anxiety) in all five domains of the AweScoreCF questionnaire (p=0.092-0.096). Our findings suggest ivacaftor displays potential clinical anxiolytic and stimulating properties, and may have beneficial effects on mood.
  • Item
    Thumbnail Image
    Sputum Active Polymyxin Lipopeptides: Activity against Cystic Fibrosis Pseudomonas aeruginosa Isolates and Their Interactions with Sputum Biomolecules
    Schneider-Futschik, EK ; Paulin, OKA ; Hoyer, D ; Roberts, KD ; Ziogas, J ; Baker, MA ; Karas, J ; Li, J ; Velkov, T (AMER CHEMICAL SOC, 2018-05)
    The mucoid biofilm mode of growth of Pseudomonas aeruginosa ( P. aeruginosa) in the lungs of cystic fibrosis patients makes eradication of infections with antibiotic therapy very difficult. The lipopeptide antibiotics polymyxin B and colistin are currently the last-resort therapies for infections caused by multidrug-resistant P. aeruginosa. In the present study, we investigated the antibacterial activity of a series of polymyxin lipopeptides (polymyxin B, colistin, FADDI-003, octapeptin A3, and polymyxin A2) against a panel of polymyxin-susceptible and polymyxin-resistant P. aeruginosa cystic fibrosis isolates grown under planktonic or biofilm conditions in artificial sputum and their interactions with sputum component biomolecules. In sputum media under planktonic conditions, the lipopeptides FADDI-003 and octapeptin A3 displayed very promising activity against the polymyxin-resistant isolate FADDI-PA066 (polymyxin B minimum inhibitory concentration (MIC) = 32 mg/L), while retaining their activity against the polymyxin-sensitive strains FADDI-PA021 (polymyxin B MIC = 1 mg/L) and FADDI-PA020 (polymyxin B MIC = 2 mg/L). Polymyxin A2 was only effective against the polymyxin-sensitive isolates. However, under biofilm growth conditions, the hydrophobic lipopeptide FADDI-003 was inactive compared to the more hydrophilic lipopeptides, octapeptin A3, polymyxin A2, polymyxin B, and colistin. Transmission electron micrographs revealed octapeptin A3 caused reduction in the cell numbers in biofilm as well as biofilm disruption/"antibiofilm" activity. We therefore assessed the interactions of the lipopeptides with the component sputum biomolecules, mucin, deoxyribonucleic acid (DNA), surfactant, F-actin, lipopolysaccharide, and phospholipids. We observed the general trend that sputum biomolecules reduce lipopeptide antibacterial activity. Collectively, our data suggests that, in the airways, lipopeptide binding to component sputum biomolecules may reduce antibacterial efficacy and is dependent on the physicochemical properties of the lipopeptide.
  • Item
    Thumbnail Image
    Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa
    Hussein, M ; Han, M-L ; Zhu, Y ; Schneider-Futschik, EK ; Hu, X ; Zhou, QT ; Lin, Y-W ; Anderson, D ; Creek, DJ ; Hoyer, D ; Li, J ; Velkov, T (ELSEVIER SCIENCE BV, 2018)
    Polymyxins are amongst the most important antibiotics in modern medicine, in recent times their clinical utility has been overshadowed by nosocomial outbreaks of polymyxin resistant MDR Gram-negative 'superbugs'. An effective strategy to surmount polymyxin resistance is combination therapy with FDA-approved non-antibiotic drugs. Herein we used untargeted metabolomics to investigate the mechanism(s) of synergy between polymyxin B and the selective estrogen receptor modulator (SERM) tamoxifen against a polymyxin-resistant MDR cystic fibrosis (CF) Pseudomonas aeruginosa FADDI-PA006 isolate (polymyxin B MIC=8 mg/L , it is an MDR polymyxin resistant P. aeruginosa isolated from the lungs of a CF patient). The metabolome of FADDI-PA006 was profiled at 15 min, 1 and 4 h following treatment with polymyxin B (2 mg/L), tamoxifen (8 mg/L) either as monotherapy or in combination. At 15 min, the combination treatment induced a marked decrease in lipids, primarily fatty acid and glycerophospholipid metabolites that are involved in the biosynthesis of bacterial membranes. In line with the polymyxin-resistant status of this strain, at 1 h, both polymyxin B and tamoxifen monotherapies produced little effect on bacterial metabolism. In contrast to the combination which induced extensive reduction (≥ 1.0-log2-fold, p ≤ 0.05; FDR ≤ 0.05) in the levels of essential intermediates involved in cell envelope biosynthesis. Overall, these novel findings demonstrate that the primary mechanisms underlying the synergistic bactericidal effect of the combination against the polymyxin-resistant P. aeruginosa CF isolate FADDI-PA006 involves a disruption of the cell envelope biogenesis and an inhibition of aminoarabinose LPS modifications that confer polymyxin resistance.