Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Synthesis and structure-activity relationships of teixobactin
    Karas, JA ; Chen, F ; Schneider-Futschik, EK ; Kang, Z ; Hussein, M ; Swarbrick, J ; Hoyer, D ; Giltrap, AM ; Payne, RJ ; Li, J ; Velkov, T (WILEY, 2020-01)
    The discovery of antibiotics has led to the effective treatment of bacterial infections that were otherwise fatal and has had a transformative effect on modern medicine. Teixobactin is an unusual depsipeptide natural product that was recently discovered from a previously unculturable soil bacterium and found to possess potent antibacterial activity against several Gram positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. One of the key features of teixobactin as an antibiotic lead is that resistance could not be generated in a laboratory setting. This is proposed to be a result of a mechanism of action that involves binding to essential cell wall synthesis building blocks, lipid II and lipid III. Since the initial isolation report in 2015, significant efforts have been made to understand its unique mechanism of action, develop efficient synthetic routes for its production, and thus enable the generation of analogues for structure-activity relationship studies and optimization of its pharmacological properties. Our review provides a comprehensive treatise on the progress in understanding teixobactin chemistry, structure-activity relationships, and mechanisms of antibacterial activity. Teixobactin represents an exciting starting point for the development of new antibiotics that can be used to combat multidrug-resistant bacterial ("superbug") infections.
  • Item
    Thumbnail Image
    The impact of backbone N-methylation on the structure-activity relationship of Leu10-teixobactin
    Velkov, T ; Swarbrick, JD ; Hussein, MH ; Schneider-Futschik, EK ; Hoyer, D ; Li, J ; Karas, JA (WILEY, 2019-09)
    Antimicrobial resistance is a serious threat to global human health; therefore, new anti-infective therapeutics are required. The cyclic depsi-peptide teixobactin exhibits potent antimicrobial activity against several Gram-positive pathogens. To study the natural product's mechanism of action and improve its pharmacological properties, efficient chemical methods for preparing teixobactin analogues are required to expedite structure-activity relationship studies. Described herein is a synthetic route that enables rapid access to analogues. Furthermore, our new N-methylated analogues highlight that hydrogen bonding along the N-terminal tail is likely to be important for antimicrobial activity.
  • Item
    Thumbnail Image
    Separating Probability and Reversal Learning in a Novel Probabilistic Reversal Learning Task for Mice
    Metha, JA ; Brian, ML ; Oberrauch, S ; Barnes, SA ; Featherby, TJ ; Bossaerts, P ; Murawski, C ; Hoyer, D ; Jacobson, LH (Frontiers Media SA, 2020-01-09)
    The exploration/exploitation tradeoff – pursuing a known reward vs. sampling from lesser known options in the hope of finding a better payoff – is a fundamental aspect of learning and decision making. In humans, this has been studied using multi-armed bandit tasks. The same processes have also been studied using simplified probabilistic reversal learning (PRL) tasks with binary choices. Our investigations suggest that protocols previously used to explore PRL in mice may prove beyond their cognitive capacities, with animals performing at a no-better-than-chance level. We sought a novel probabilistic learning task to improve behavioral responding in mice, whilst allowing the investigation of the exploration/exploitation tradeoff in decision making. To achieve this, we developed a two-lever operant chamber task with levers corresponding to different probabilities (high/low) of receiving a saccharin reward, reversing the reward contingencies associated with levers once animals reached a threshold of 80% responding at the high rewarding lever. We found that, unlike in existing PRL tasks, mice are able to learn and behave near optimally with 80% high/20% low reward probabilities. Altering the reward contingencies towards equality showed that some mice displayed preference for the high rewarding lever with probabilities as close as 60% high/40% low. Additionally, we show that animal choice behavior can be effectively modelled using reinforcement learning (RL) models incorporating learning rates for positive and negative prediction error, a perseveration parameter, and a noise parameter. This new decision task, coupled with RL analyses, advances access to investigate the neuroscience of the exploration/exploitation tradeoff in decision making.
  • Item
    Thumbnail Image
    Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization
    Turchin, P ; Currie, TE ; Whitehouse, H ; Francois, P ; Feeney, K ; Mullins, D ; Hoyer, D ; Collins, C ; Grohmann, S ; Savage, P ; Mendel-Gleason, G ; Turner, E ; Dupeyron, A ; Cioni, E ; Reddish, J ; Levine, J ; Jordan, G ; Brandl, E ; Williams, A ; Cesaretti, R ; Krueger, M ; Ceccarelli, A ; Figliulo-Rosswurm, J ; Tuan, P-J ; Peregrine, P ; Marciniak, A ; Preiser-Kapeller, J ; Kradin, N ; Korotayev, A ; Palmisano, A ; Baker, D ; Bidmead, J ; Bol, P ; Christian, D ; Cook, C ; Covey, A ; Feinman, G ; Juliusson, AD ; Kristinsson, A ; Miksic, J ; Mostern, R ; Petrie, C ; Rudiak-Gould, P ; ter Haar, B ; Wallace, V ; Mair, V ; Xie, L ; Baines, J ; Bridges, E ; Manning, J ; Lockhart, B ; Bogaard, A ; Spencer, C (NATL ACAD SCIENCES, 2018-01-09)
    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as "Seshat: Global History Databank." We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history.
  • Item
    Thumbnail Image
    The Killing Mechanism of Teixobactin against Methicillin-Resistant Staphylococcus aureus: an Untargeted Metabolomics Study
    Hussein, M ; Karas, JA ; Schneider-Futschik, EK ; Chen, F ; Swarbrick, J ; Paulin, OKA ; Hoyer, D ; Baker, M ; Zhu, Y ; Li, J ; Velkov, T ; Lloyd, KG (American Society for Microbiology, 2020)
    Antibiotics have served humankind through their use in modern medicine as effective treatments for otherwise fatal bacterial infections. Teixobactin is a first member of newly discovered natural antibiotics that was recently identified from a hitherto-unculturable soil bacterium, Eleftheria terrae, and recognized as a potent antibacterial agent against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. The most distinctive characteristic of teixobactin as an effective antibiotic is that teixobactin resistance could not be evolved in a laboratory setting. It is purported that teixobactin’s “resistance-resistant” mechanism of action includes binding to the essential bacterial cell wall synthesis building blocks lipid II and lipid III. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of the synthetic teixobactin analogue Leu10-teixobactin against a MRSA strain, S. aureus ATCC 700699. The metabolomes of S. aureus ATCC 700699 cells 1, 3, and 6 h following treatment with Leu10-teixobactin (0.5 μg/ml, i.e., 0.5× MIC) were compared to those of the untreated controls. Leu10-teixobactin significantly perturbed bacterial membrane lipids (glycerophospholipids and fatty acids), peptidoglycan (lipid I and II) metabolism, and cell wall teichoic acid (lipid III) biosynthesis as early as after 1 h of treatment, reflecting an initial activity on the cell envelope. Concordant with its time-dependent antibacterial killing action, Leu10-teixobactin caused more perturbations in the levels of key intermediates in pathways of amino-sugar and nucleotide-sugar metabolism and their downstream peptidoglycan and teichoic acid biosynthesis at 3 and 6 h. Significant perturbations in arginine metabolism and the interrelated tricarboxylic acid cycle, histidine metabolism, pantothenate, and coenzyme A biosynthesis were also observed at 3 and 6 h. To conclude, this is the first study to provide novel metabolomics mechanistic information, which lends support to the development of teixobactin as an antibacterial drug for the treatment of multidrug-resistant Gram-positive infections
  • Item
    Thumbnail Image
    THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors
    Alexander, SPH ; Christopoulos, A ; Davenport, AP ; Kelly, E ; Mathie, A ; Peters, JA ; Veale, EL ; Armstrong, JF ; Faccenda, E ; Harding, SD ; Pawson, AJ ; Sharman, JL ; Southan, C ; Davies, JA ; Arumugam, TV ; Bennett, A ; Sjogren, B ; Sobey, C ; Wong, SS ; Abbracchio, MP ; Alexander, W ; Al-hosaini, K ; Back, M ; Beaulieu, J-M ; Bernstein, KE ; Bettler, B ; Birdsall, NJM ; Blaho, V ; Bousquet, C ; Brauner-Osborne, H ; Burnstock, G ; Calo, G ; Castano, JP ; Catt, KJ ; Ceruti, S ; Chazot, P ; Chiang, N ; Chun, J ; Cianciulli, A ; Clapp, LH ; Couture, R ; Csaba, Z ; Dent, G ; Singh, KD ; Douglas, SD ; Dournaud, P ; Eguchi, S ; Escher, E ; Filardo, E ; Fong, TM ; Fumagalli, M ; Gainetdinov, RR ; de Gasparo, M ; Gershengorn, M ; Gobeil, F ; Goodfriend, TL ; Goudet, C ; Gregory, KJ ; Gundlach, AL ; Hamann, J ; Hanson, J ; Hauger, RL ; Hay, D ; Heinemann, A ; Hollenberg, MD ; Holliday, ND ; Horiuchi, M ; Hoyer, D ; Hunyady, L ; Husain, A ; Ijzerman, AP ; Inagami, T ; Jacobson, KA ; Jensen, RT ; Jockers, R ; Jonnalagadda, D ; Karnik, S ; Kaupmann, K ; Kemp, J ; Kennedy, C ; Kihara, Y ; Kozielewicz, P ; Kreienkamp, H-J ; Kukkonen, JP ; Langenhan, T ; Leach, K ; Lecca, D ; Lee, JD ; Leeman, SE ; Leprince, J ; Lolait, SJ ; Lupp, A ; Macrae, R ; Maguire, J ; Mazella, J ; McArdle, CA ; Melmed, S ; Michel, MC ; Miller, L ; Mitolo, V ; Mouillac, B ; Murphy, PM ; Nahon, J-L ; Norel, X ; Nyimanu, D ; O'Carroll, A-M ; Offermanns, S ; Panaro, MA ; Pertwee, RG ; Pin, J-P ; Prossnitz, E ; Ramachandran, R ; Reinscheid, RK ; Rondard, P ; Rovati, GE ; Ruzza, C ; Sanger, G ; Schoeneberg, T ; Schulte, G ; Schulz, S ; Segaloff, DL ; Serhan, CN ; Stoddart, LA ; Sugimoto, Y ; Summers, R ; Tan, V ; Thomas, W ; Timmermans, PBMWM ; Tirupula, K ; Tulipano, G ; Unal, H ; Unger, T ; Vanderheyden, P ; Vaudry, D ; Vaudry, H ; Vilardaga, J-P ; Walker, CS ; Ward, DT ; Wester, H-J ; Willars, GB ; Williams, TL ; Woodruff, TM ; Yao, C ; Aldrich, RW ; Becirovic, E ; Biel, M ; Catterall, WA ; Conner, AC ; Davies, P ; Delling, M ; Di Virgilio, F ; Falzoni, S ; George, C ; Goldstein, SAN ; Grissmer, S ; Ha, K ; Hammelmann, V ; Hanukoglu, I ; Jarvis, M ; Jensen, AA ; Kaczmarek, LK ; Kellenberger, S ; Kennedy, C ; King, B ; Lynch, JW ; Perez-Reyes, E ; Plant, LD ; Rash, LD ; Ren, D ; Sivilotti, LG ; Smart, TG ; Snutch, TP ; Tian, J ; Van den Eynde, C ; Vriens, J ; Wei, AD ; Winn, BT ; Wulff, H ; Xu, H ; Yue, L ; Zhang, X ; Zhu, M ; Coons, L ; Fuller, P ; Korach, KS ; Young, M ; Bryant, C ; Farndale, RW ; Hobbs, A ; Jarvis, GE ; MacEwan, D ; Monie, TP ; Waldman, S ; Beuve, A ; Boison, D ; Brouckaert, P ; Burnett, JC ; Burns, K ; Dessauer, C ; Friebe, A ; Garthwaite, J ; Gertsch, J ; Helsby, N ; Izzo, AA ; Koesling, D ; Kuhn, M ; Ostrom, R ; Papapetropoulos, A ; Potter, LR ; Pyne, NJ ; Pyne, S ; Russwurm, M ; Schmidt, HHHW ; Seifert, R ; Stasch, J-P ; Szabo, C ; van der Stelt, M ; van der Vliet, A ; Watts, V ; Anderson, CMH ; Broer, S ; Dawson, P ; Hagenbuch, B ; Hammond, JR ; Hancox, J ; Inui, K-I ; Kanai, Y ; Kemp, S ; Thwaites, DT ; Verri, T (WILEY, 2019-12)
    The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  • Item
    Thumbnail Image
    The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites
    Schneider, EK ; McQuade, RM ; Carbone, VC ; Reyes-Ortega, F ; Wilson, JW ; Button, B ; Saito, A ; Poole, DP ; Hoyer, D ; Li, J ; Velkov, T (EUROPEAN RESPIRATORY SOC JOURNALS LTD, 2018-01-01)
    Ivacaftor-lumacaftor and ivacaftor are two new breakthrough cystic fibrosis transmembrane conductance modulators. The interactions of ivacaftor and its two metabolites hydroxymethylivacaftor (iva-M1) and ivacaftorcarboxylate (iva-M6) with neurotransmitter receptors were investigated in radioligand binding assays. Ivacaftor displayed significant affinity to the 5-hydroxytryptamine (5-HT; serotonin) 5-HT2C receptor (pKi=6.06±0.03), β3-adrenergic receptor (pKi=5.71±0.07), δ-opioid receptor (pKi=5.59±0.06) and the dopamine transporter (pKi=5.50±0.20); iva-M1 displayed significant affinity to the 5-HT2C receptor (pKi=5.81±0.04) and the muscarinic M3 receptor (pKi=5.70±0.10); iva-M6 displayed significant affinity to the 5-HT2A receptor (pKi=7.33±0.05). The in vivo central nervous system activity of ivacaftor (40 mg·kg-1 intraperitoneally for 21 days) was assessed in a chronic mouse model of depression. In the forced swim test, the ivacaftor-treated group displayed decreased immobility (52.8±7.6 s), similarly to fluoxetine (33.8±11.0 s), and increased climbing/swimming activity (181.5±9.2 s). In the open field test, ivacaftor produced higher locomotor activity than the fluoxetine group, measured both as mean number of paw touches (ivacaftor 81.1±9.6 versus fluoxetine 57.9±9.5) and total distance travelled (ivacaftor 120.6±16.8 cm versus fluoxetine 84.5±16.0 cm) in 600 s. Treatment of 23 cystic fibrosis patients with ivacaftor-lumacaftor resulted in significant improvements in quality of life (including anxiety) in all five domains of the AweScoreCF questionnaire (p=0.092-0.096). Our findings suggest ivacaftor displays potential clinical anxiolytic and stimulating properties, and may have beneficial effects on mood.
  • Item
    Thumbnail Image
    Sputum Active Polymyxin Lipopeptides: Activity against Cystic Fibrosis Pseudomonas aeruginosa Isolates and Their Interactions with Sputum Biomolecules
    Schneider-Futschik, EK ; Paulin, OKA ; Hoyer, D ; Roberts, KD ; Ziogas, J ; Baker, MA ; Karas, J ; Li, J ; Velkov, T (AMER CHEMICAL SOC, 2018-05)
    The mucoid biofilm mode of growth of Pseudomonas aeruginosa ( P. aeruginosa) in the lungs of cystic fibrosis patients makes eradication of infections with antibiotic therapy very difficult. The lipopeptide antibiotics polymyxin B and colistin are currently the last-resort therapies for infections caused by multidrug-resistant P. aeruginosa. In the present study, we investigated the antibacterial activity of a series of polymyxin lipopeptides (polymyxin B, colistin, FADDI-003, octapeptin A3, and polymyxin A2) against a panel of polymyxin-susceptible and polymyxin-resistant P. aeruginosa cystic fibrosis isolates grown under planktonic or biofilm conditions in artificial sputum and their interactions with sputum component biomolecules. In sputum media under planktonic conditions, the lipopeptides FADDI-003 and octapeptin A3 displayed very promising activity against the polymyxin-resistant isolate FADDI-PA066 (polymyxin B minimum inhibitory concentration (MIC) = 32 mg/L), while retaining their activity against the polymyxin-sensitive strains FADDI-PA021 (polymyxin B MIC = 1 mg/L) and FADDI-PA020 (polymyxin B MIC = 2 mg/L). Polymyxin A2 was only effective against the polymyxin-sensitive isolates. However, under biofilm growth conditions, the hydrophobic lipopeptide FADDI-003 was inactive compared to the more hydrophilic lipopeptides, octapeptin A3, polymyxin A2, polymyxin B, and colistin. Transmission electron micrographs revealed octapeptin A3 caused reduction in the cell numbers in biofilm as well as biofilm disruption/"antibiofilm" activity. We therefore assessed the interactions of the lipopeptides with the component sputum biomolecules, mucin, deoxyribonucleic acid (DNA), surfactant, F-actin, lipopolysaccharide, and phospholipids. We observed the general trend that sputum biomolecules reduce lipopeptide antibacterial activity. Collectively, our data suggests that, in the airways, lipopeptide binding to component sputum biomolecules may reduce antibacterial efficacy and is dependent on the physicochemical properties of the lipopeptide.
  • Item
    Thumbnail Image
    Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa
    Hussein, M ; Han, M-L ; Zhu, Y ; Schneider-Futschik, EK ; Hu, X ; Zhou, QT ; Lin, Y-W ; Anderson, D ; Creek, DJ ; Hoyer, D ; Li, J ; Velkov, T (ELSEVIER SCIENCE BV, 2018)
    Polymyxins are amongst the most important antibiotics in modern medicine, in recent times their clinical utility has been overshadowed by nosocomial outbreaks of polymyxin resistant MDR Gram-negative 'superbugs'. An effective strategy to surmount polymyxin resistance is combination therapy with FDA-approved non-antibiotic drugs. Herein we used untargeted metabolomics to investigate the mechanism(s) of synergy between polymyxin B and the selective estrogen receptor modulator (SERM) tamoxifen against a polymyxin-resistant MDR cystic fibrosis (CF) Pseudomonas aeruginosa FADDI-PA006 isolate (polymyxin B MIC=8 mg/L , it is an MDR polymyxin resistant P. aeruginosa isolated from the lungs of a CF patient). The metabolome of FADDI-PA006 was profiled at 15 min, 1 and 4 h following treatment with polymyxin B (2 mg/L), tamoxifen (8 mg/L) either as monotherapy or in combination. At 15 min, the combination treatment induced a marked decrease in lipids, primarily fatty acid and glycerophospholipid metabolites that are involved in the biosynthesis of bacterial membranes. In line with the polymyxin-resistant status of this strain, at 1 h, both polymyxin B and tamoxifen monotherapies produced little effect on bacterial metabolism. In contrast to the combination which induced extensive reduction (≥ 1.0-log2-fold, p ≤ 0.05; FDR ≤ 0.05) in the levels of essential intermediates involved in cell envelope biosynthesis. Overall, these novel findings demonstrate that the primary mechanisms underlying the synergistic bactericidal effect of the combination against the polymyxin-resistant P. aeruginosa CF isolate FADDI-PA006 involves a disruption of the cell envelope biogenesis and an inhibition of aminoarabinose LPS modifications that confer polymyxin resistance.