Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity
    Xia, YC ; Radwan, A ; Keenan, CR ; Langenbach, SY ; Li, M ; Radojicic, D ; Londrigan, SL ; Gualano, RC ; Stewart, AG ; Schnell, MJ (PUBLIC LIBRARY SCIENCE, 2017-01)
    Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-β (TGF-β) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-β. In the current study, we examine the contribution of TGF-β activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-β expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFβRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-β activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-β.
  • Item
    Thumbnail Image
    A Non-canonical Pathway with Potential for Safer Modulation of Transforming Growth Factor-β1 in Steroid-Resistant Airway Diseases
    Li, M ; Keenan, CR ; Lopez-Campos, G ; Mangum, JE ; Chen, Q ; Prodanovic, D ; Xia, YC ; Langenbach, SY ; Harris, T ; Hofferek, V ; Reid, GE ; Stewart, AG (CELL PRESS, 2019-02-22)
    Impaired therapeutic responses to anti-inflammatory glucocorticoids (GC) in chronic respiratory diseases are partly attributable to interleukins and transforming growth factor β1 (TGF-β1). However, previous efforts to prevent induction of GC insensitivity by targeting established canonical and non-canonical TGF-β1 pathways have been unsuccessful. Here we elucidate a TGF-β1 signaling pathway modulating GC activity that involves LIM domain kinase 2-mediated phosphorylation of cofilin1. Severe, steroid-resistant asthmatic airway epithelium showed increased levels of immunoreactive phospho-cofilin1. Phospho-cofilin1 was implicated in the activation of phospholipase D (PLD) to generate the effector(s) (lyso)phosphatidic acid, which mimics the TGF-β1-induced GC insensitivity. TGF-β1 induction of the nuclear hormone receptor corepressor, SMRT (NCOR2), was dependent on cofilin1 and PLD activities. Depletion of SMRT prevented GC insensitivity. This pathway for GC insensitivity offers several promising drug targets that potentially enable a safer approach to the modulation of TGF-β1 in chronic inflammatory diseases than is afforded by global TGF-β1 inhibition.
  • Item
    Thumbnail Image
    Casein Kinase 1δ/ε Inhibitor, PF670462 Attenuates the Fibrogenic Effects of Transforming Growth Factor-β in Pulmonary Fibrosis
    Keenan, CR ; Langenbach, SY ; Jativa, F ; Harris, T ; Li, M ; Chen, Q ; Xia, Y ; Gao, B ; Schuliga, MJ ; Jaffar, J ; Prodanovic, D ; Tu, Y ; Berhan, A ; Lee, PVS ; Westall, GP ; Stewart, AG (FRONTIERS MEDIA SA, 2018-07-10)
    Transforming growth factor-beta (TGF-β) is a major mediator of fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). However, therapeutic global inhibition of TGF-β is limited by unwanted immunosuppression and mitral valve defects. We performed an extensive literature search to uncover a little-known connection between TGF-β signaling and casein kinase (CK) activity. We have examined the abundance of CK1 delta and epsilon (CK1δ/ε) in lung tissue from IPF patients and non-diseased controls, and investigated whether inhibition of CK1δ/ε with PF670462 inhibits pulmonary fibrosis. CK1δ/ε levels in lung tissue from IPF patients and non-diseased controls were assessed by immunohistochemistry. Anti-fibrotic effects of the CK1δ/ε inhibitor PF670462 were assessed in pre-clinical models, including acute and chronic bleomycin mouse models and in vitro experiments on spheroids made from primary human lung fibroblast cells from IPF and control donors, and human A549 alveolar-like adenocarcinoma-derived epithelial cells. Increased expression of CK1δ and ε in IPF lungs compared to non-diseased controls was accompanied by increased levels of the product, phospho-period 2. In vitro, PF670462 prevented TGF-β-induced epithelial-mesenchymal transition. The stiffness of IPF-derived spheroids was reduced by PF670462 and TGF-β-induced fibrogenic gene expression was inhibited. The CK1δ/ε inhibitor PF670462 administered systemically or locally by inhalation prevented both acute and chronic bleomycin-induced pulmonary fibrosis in mice. PF670462 administered in a 'therapeutic' regimen (day 7 onward) prevented bleomycin-induced lung collagen accumulation. Elevated expression and activity of CK1 δ and ε in IPF and anti-fibrogenic effects of the dual CK1δ/ε inhibitor, PF670462, support CK1δ/ε as novel therapeutic targets for IPF.
  • Item
    No Preview Available
    Plasminogen-Stimulated Inflammatory Cytokine Production by Airway Smooth Muscle Cells Is Regulated by Annexin A2
    Schuliga, M ; Langenbach, S ; Xia, YC ; Qin, C ; Mok, JSL ; Harris, T ; Mackay, GA ; Medcalf, RL ; Stewart, AG (AMER THORACIC SOC, 2013-11)
    Plasminogen has a role in airway inflammation. Airway smooth muscle (ASM) cells cleave plasminogen into plasmin, a protease with proinflammatory activity. In this study, the effect of plasminogen on cytokine production by human ASM cells was investigated in vitro. Levels of IL-6 and IL-8 in the medium of ASM cells were increased by incubation with plasminogen (5-50 μg/ml) for 24 hours (P < 0.05; n = 6-9), corresponding to changes in the levels of cytokine mRNA at 4 hours. The effects of plasminogen were attenuated by α2-antiplasmin (1 μg/ml), a plasmin inhibitor (P < 0.05; n = 6-12). Exogenous plasmin (5-15 mU/ml) also stimulated cytokine production (P < 0.05; n = 6-8) in a manner sensitive to serine-protease inhibition by aprotinin (10 KIU/ml). Plasminogen-stimulated cytokine production was increased in cells pretreated with basic fibroblast growth factor (300 pM) in a manner associated with increases in urokinase plasminogen activator expression and plasmin formation. The knockdown of annexin A2, a component of the putative plasminogen receptor comprised of annexin A2 and S100A10, attenuated plasminogen conversion into plasmin and plasmin-stimulated cytokine production by ASM cells. Moreover, a role for annexin A2 in airway inflammation was demonstrated in annexin A2-/- mice in which antigen-induced increases in inflammatory cell number and IL-6 levels in the bronchoalveolar lavage fluid were reduced (P < 0.01; n = 10-14). In conclusion, plasminogen stimulates ASM cytokine production in a manner regulated by annexin A2. Our study shows for the first time that targeting annexin A2-mediated signaling may provide a novel therapeutic approach to the treatment of airway inflammation in diseases such as chronic asthma.