Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Increased endothelin-1 in colorectal cancer and reduction of tumour growth by ETA receptor antagonism
    Asham, E ; Shankar, A ; Loizidou, M ; Fredericks, S ; Miller, K ; Boulos, PB ; Burnstock, G ; Taylor, I (NATURE PUBLISHING GROUP, 2001-11-30)
    Endothelin-1 (ET-1) is a vasoconstrictor peptide which stimulates proliferation in vitro in different cell types, including colorectal cancer cells. Raised ET-1 levels have been detected both on tissue specimens and in the plasma of patients with cancers. To investigate the role of ET-1 in colorectal cancer: (i) ET-1 plasma levels in patients with colorectal cancer were measured by radioimmunoassay: group 1 = controls (n = 22), group 2 = primary colorectal cancer only (n = 39), group 3 = liver metastases only (n = 26); (ii) ET-1 expression in primary colorectal cancer specimens (n =10) was determined immunohistochemically and (iii) the effect of intraportally infused antagonists to the two ET-1 receptors, ET(A) and ET(B), on the growth of liver metastases in a rat model was assessed. ET-1 plasma levels were significantly increased in both patients with primary tumour and patients with metastases, compared to controls (P < 0.01, 3.9 +/- 1.4, 4.5 +/- 1.5, vs. 2.75 +/- 1.37 pg/ml, respectively). Immunohistochemically, strong expression of ET-1 was found in the cytoplasm, stroma and blood vessels of cancers, unlike the normal colon where only the apical layer of the epithelium, vascular endothelial cells and surrounding stroma were positively stained. In the rat model, there was significant reduction in liver tumour weights compared to controls, following treatment with the ET(A) antagonist (BQ123) 30 min after the intraportal inoculation of tumour cells (P < 0.05). These results suggest ET-1 is produced by colorectal cancers and may play a role in the growth of colorectal cancer acting through ET(A) receptors. ET(A) antagonists are indicated as potential anti-cancer agents.
  • Item
    Thumbnail Image
    beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2.
    DeFea, KA ; Zalevsky, J ; Thoma, MS ; Déry, O ; Mullins, RD ; Bunnett, NW (Rockefeller University Press, 2000-03-20)
    Recently, a requirement for beta-arrestin-mediated endocytosis in the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by several G protein-coupled receptors (GPCRs) has been proposed. However, the importance of this requirement for function of ERK1/2 is unknown. We report that agonists of Galphaq-coupled proteinase-activated receptor 2 (PAR2) stimulate formation of a multiprotein signaling complex, as detected by gel filtration, immunoprecipitation and immunofluorescence. The complex, which contains internalized receptor, beta-arrestin, raf-1, and activated ERK, is required for ERK1/2 activation. However, ERK1/2 activity is retained in the cytosol and neither translocates to the nucleus nor causes proliferation. In contrast, a mutant PAR2 (PAR2deltaST363/6A), which is unable to interact with beta-arrestin and, thus, does not desensitize or internalize, activates ERK1/2 by a distinct pathway, and fails to promote both complex formation and cytosolic retention of the activated ERK1/2. Whereas wild-type PAR2 activates ERK1/2 by a PKC-dependent and probably a ras-independent pathway, PAR2(deltaST363/6A) appears to activate ERK1/2 by a ras-dependent pathway, resulting in increased cell proliferation. Thus, formation of a signaling complex comprising PAR2, beta-arrestin, raf-1, and activated ERK1/2 might ensure appropriate subcellular localization of PAR2-mediated ERK activity, and thereby determine the mitogenic potential of receptor agonists.
  • Item
    Thumbnail Image
    ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells
    Ryten, M ; Dunn, PM ; Neary, JT ; Burnstock, G (ROCKEFELLER UNIV PRESS, 2002-07-22)
    ATP is well known for its role as an intracellular energy source. However, there is increasing awareness of its role as an extracellular messenger molecule (Burnstock, 1997). Although evidence for the presence of receptors for extracellular ATP on skeletal myoblasts was first published in 1983 (Kolb and Wakelam), their physiological function has remained unclear. In this paper we used primary cultures of rat skeletal muscle satellite cells to investigate the role of purinergic signaling in muscle formation. Using immunocytochemistry, RT-PCR, and electrophysiology, we demonstrate that the ionotropic P2X5 receptor is present on satellite cells and that activation of a P2X receptor inhibits proliferation, stimulates expression of markers of muscle cell differentiation, including myogenin, p21, and myosin heavy chain, and increases the rate of myotube formation. Furthermore, we demonstrate that ATP application results in a significant and rapid increase in the phosphorylation of MAPKs, particularly p38, and that inhibition of p38 activity can prevent the effect of ATP on cell number. These results not only demonstrate the existence of a novel regulator of skeletal muscle differentiation, namely ATP, but also a new role for ionotropic P2X receptors in the control of cell fate.
  • Item
    No Preview Available
    DEGENERATION AND REGENERATION IN THE NERVOUS SYSTEM
    Love, S (Oxford University Press (OUP), 2003-04-01)
    With emphasis on actual and therapeutic importance of the work reviewed, Degeneration and Regeneration in the Nervous System is a useful overview for graduate students, their teachers and researchers working in this field.
  • Item
    Thumbnail Image
    Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy
    Cifuentes-Diaz, C ; Frugier, T ; Tiziano, FD ; Lacéne, E ; Roblot, N ; Joshi, V ; Moreau, MH ; Melki, J (ROCKEFELLER UNIV PRESS, 2001-03-05)
    Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons of the spinal cord associated with muscle paralysis and caused by mutations of the survival motor neuron gene (SMN). To determine whether SMN gene defect in skeletal muscle might have a role in SMA pathogenesis, deletion of murine SMN exon 7, the most frequent mutation found in SMA, has been restricted to skeletal muscle by using the Cre-loxP system. Mutant mice display ongoing muscle necrosis with a dystrophic phenotype leading to muscle paralysis and death. The dystrophic phenotype is associated with elevated levels of creatine kinase activity, Evans blue dye uptake into muscle fibers, reduced amount of dystrophin and upregulation of utrophin expression suggesting a destabilization of the sarcolemma components. The mutant mice will be a valuable model for elucidating the underlying mechanism. Moreover, our results suggest a primary involvement of skeletal muscle in human SMA, which may contribute to motor defect in addition to muscle denervation caused by the motor neuron degeneration. These data may have important implications for the development of therapeutic strategies in SMA.