Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 98
  • Item
    Thumbnail Image
    Purinergic signalling and diabetes
    Burnstock, G ; Novak, I (SPRINGER, 2013-09)
    The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic signalling, we will focus on the role of purinergic signalling and its changes associated with diabetes in the pancreas and selected tissues/organ systems affected by hyperglycaemia and other stress molecules of diabetes. Since this is the first review of this kind, a comprehensive historical angle is taken, and common and divergent roles of receptors for nucleotides and nucleosides in different organ systems will be given. This integrated picture will aid our understanding of the challenges of the potential and currently used drugs targeted to specific organ/cells or disorders associated with diabetes.
  • Item
    Thumbnail Image
    Purinergic signalling and immune cells
    Burnstock, G ; Boeynaems, J-M (SPRINGER, 2014-12)
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
  • Item
    Thumbnail Image
    Eukaryotic expression, purification and structure/function analysis of native, recombinant CRISP3 from human and mouse
    Volpert, M ; Mangum, JE ; Jamsai, D ; D'Sylva, R ; O'Bryan, MK ; McIntyre, P (NATURE PORTFOLIO, 2014-02-27)
    While the Cysteine-Rich Secretory Proteins (CRISPs) have been broadly proposed as regulators of reproduction and immunity, physiological roles have yet to be established for individual members of this family. Past efforts to investigate their functions have been limited by the difficulty of purifying correctly folded CRISPs from bacterial expression systems, which yield low quantities of correctly folded protein containing the eight disulfide bonds that define the CRISP family. Here we report the expression and purification of native, glycosylated CRISP3 from human and mouse, expressed in HEK 293 cells and isolated using ion exchange and size exclusion chromatography. Functional authenticity was verified by substrate-affinity, native glycosylation characteristics and quaternary structure (monomer in solution). Validated protein was used in comparative structure/function studies to characterise sites and patterns of N-glycosylation in CRISP3, revealing interesting inter-species differences.
  • Item
    Thumbnail Image
    Increased metal content in the TDP-43A315T transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis
    Dang, TNT ; Lim, NKH ; Grubman, A ; Li, Q-X ; Volitakis, I ; White, AR ; Crouch, PJ (FRONTIERS MEDIA SA, 2014-02-11)
    Disrupted metal homeostasis is a consistent feature of neurodegenerative disease in humans and is recapitulated in mouse models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) and neuronal ceriod lipofuscinosis. While the definitive pathogenesis of neurodegenerative disease in humans remains to be fully elucidated, disease-like symptoms in the mouse models are all driven by the presence or over-expression of a putative pathogenic protein, indicating an in vivo relationship between expression of these proteins, disrupted metal homeostasis and the symptoms of neuronal failure. Recently it was established that mutant TAR DNA binding protein-43 (TDP-43) is associated with the development of frontotemporal lobar degeneration and ALS. Subsequent development of transgenic mice that express human TDP-43 carrying the disease-causing A315T mutation has provided new opportunity to study the underlying mechanisms of TDP-43-related neurodegenerative disease. We assessed the cognitive and locomotive phenotype of TDP-43 (A315T) mice and their wild-type littermates and also assessed bulk metal content of brain and spinal cord tissues. Metal levels in the brain were not affected by the expression of mutant TDP-43, but zinc, copper, and manganese levels were all increased in the spinal cords of TDP-43 (A315T) mice when compared to wild-type littermates. Performance of the TDP-43 (A315T) mice in the Y-maze test for cognitive function was not significantly different to wild-type mice. By contrast, performance of the TDP-43 (A315T) in the rotarod test for locomotive function was consistently worse than wild-type mice. These preliminary in vivo data are the first to show that expression of a disease-causing form of TDP-43 is sufficient to disrupt metal ion homeostasis in the central nervous system. Disrupted metal ion homeostasis in the spinal cord but not the brain may explain why the TDP-43 (A315T) mice show symptoms of locomotive decline and not cognitive decline.
  • Item
    Thumbnail Image
    Neuroinflammation and copper in Alzheimer's disease.
    Choo, XY ; Alukaidey, L ; White, AR ; Grubman, A (Hindawi Limited, 2013)
    Inflammation is the innate immune response to infection or tissue damage. Initiation of proinflammatory cascades in the central nervous system (CNS) occurs through recognition of danger associated molecular patterns by cognate immune receptors expressed on inflammatory cells and leads to rapid responses to remove the danger stimulus. The presence of activated microglia and astrocytes in the vicinity of amyloid plaques in the brains of Alzheimer's disease (AD) patients and mouse models implicates inflammation as a contributor to AD pathogenesis. Activated microglia play a critical role in amyloid clearance, but chronic deregulation of CNS inflammatory pathways results in secretion of neurotoxic mediators that ultimately contribute to neurodegeneration in AD. Copper (Cu) homeostasis is profoundly affected in AD, and accumulated extracellular Cu drives A β aggregation, while intracellular Cu deficiency limits bioavailable Cu required for CNS functions. This review presents an overview of inflammatory events that occur in AD in response to A β and highlights recent advances on the role of Cu in modulation of beneficial and detrimental inflammatory responses in AD.
  • Item
    Thumbnail Image
    Introduction and perspective, historical note
    Burnstock, G (FRONTIERS MEDIA SA, 2013-11-21)
    P2 nucleotide receptors were proposed to consist of two subfamilies based on pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following cloning of the receptors for nucleotides and studies of transduction mechanisms in the early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed on many types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune modulation. The emphasis in this review will be on the pathophysiology of P2X receptors and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome, diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special senses, airways, skin, cardiovascular, and musculoskeletal systems.
  • Item
    Thumbnail Image
    Non-Essential Role for TLR2 and Its Signaling Adaptor Mal/TIRAP in Preserving Normal Lung Architecture in Mice
    Ruwanpura, SM ; McLeod, L ; Lilja, AR ; Brooks, G ; Dousha, LF ; Seow, HJ ; Bozinovski, S ; Vlahos, R ; Hertzog, PJ ; Anderson, GP ; Jenkins, BJ ; Mora, A (PUBLIC LIBRARY SCIENCE, 2013-10-29)
    Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr4(-/-) mice by 6 months of age, the lungs of Tlr2(-/-) mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr4(-/-) mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal(-/-) mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal(-/-) mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr4(-/-) mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema.
  • Item
    Thumbnail Image
    Expression and Cellular Distribution of Ubiquitin in Response to Injury in the Developing Spinal Cord of Monodelphis domestica
    Noor, NM ; Mollgard, K ; Wheaton, BJ ; Steer, DL ; Truettner, JS ; Dziegielewska, KM ; Dietrich, WD ; Smith, AI ; Saunders, NR ; Di Giovanni, S (PUBLIC LIBRARY SCIENCE, 2013-04-23)
    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to postnatal day P35 in control opossums (Monodelphis domestica) and in response to complete spinal transection (T10) at P7, when axonal growth through site of injury occurs, and P28 when this is no longer possible. Cords were collected 1 or 7 days after injury, with age-matched controls and segments rostral to lesion were studied. Following spinal injury ubiquitin levels (western blotting) appeared reduced compared to controls especially one day after injury at P28. In contrast, after injury mRNA expression (qRT-PCR) was slightly increased at P7 but decreased at P28. Changes in isoelectric point of separated ubiquitin indicated possible post-translational modifications. Cellular distribution demonstrated a developmental shift between earliest (P8) and latest (P35) ages examined, from a predominantly cytoplasmic immunoreactivity to a nuclear expression; staining level and shift to nuclear staining was more pronounced following injury, except 7 days after transection at P28. After injury at P7 immunostaining increased in neurons and additionally in oligodendrocytes at P28. Mass spectrometry showed two ubiquitin bands; the heavier was identified as a fusion product, likely to be an ubiquitin precursor. Apparent changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets.
  • Item
    Thumbnail Image
    The Need for Full Integration of Snakebite Envenoming within a Global Strategy to Combat the Neglected Tropical Diseases: The Way Forward
    Gutierrez, JM ; Warrell, DA ; Williams, DJ ; Jensen, S ; Brown, N ; Calvete, JJ ; Harrison, RA ; de Silva, J (PUBLIC LIBRARY SCIENCE, 2013-06)
  • Item
    Thumbnail Image
    Increased Zinc and Manganese in Parallel with Neurodegeneration, Synaptic Protein Changes and Activation of Akt/GSK3 Signaling in Ovine CLN6 Neuronal Ceroid Lipofuscinosis
    Kanninen, KM ; Grubman, A ; Meyerowitz, J ; Duncan, C ; Tan, J-L ; Parker, SJ ; Crouch, PJ ; Paterson, BM ; Hickey, JL ; Donnelly, PS ; Volitakis, I ; Tammen, I ; Palmer, DN ; White, AR ; Kahle, PJ (PUBLIC LIBRARY SCIENCE, 2013-03-14)
    Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.