Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    CuII(atsm) Attenuates Neuroinflammation
    Choo, XY ; Liddell, JR ; Huuskonen, MT ; Grubman, A ; Moujalled, D ; Roberts, J ; Kysenius, K ; Patten, L ; Quek, H ; Oikari, LE ; Duncan, C ; James, SA ; McInnes, LE ; Hayne, DJ ; Donnelly, PS ; Pollari, E ; Vahatalo, S ; Lejavova, K ; Kettunen, M ; Malm, T ; Koistinaho, J ; White, AR ; Kanninen, KM (FRONTIERS MEDIA SA, 2018-09-24)
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.
  • Item
    Thumbnail Image
    C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress
    Meyerowitz, J ; Parker, SJ ; Vella, LJ ; Ng, DCH ; Price, KA ; Liddell, JR ; Caragounis, A ; Li, Q-X ; Masters, CL ; Nonaka, T ; Hasegawa, M ; Bogoyevitch, MA ; Kanninen, KM ; Crouch, PJ ; White, AR (BIOMED CENTRAL LTD, 2011-08-08)
    BACKGROUND: TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 expression and formation of C-terminal TDP-43 fragmentation and accumulation in the cytoplasm. Recent studies have shown that TDP-43 can accumulate in RNA stress granules (SGs) in response to cell stresses and this could be associated with subsequent formation of TDP-43 ubiquinated protein aggregates. However, the initial mechanisms controlling endogenous TDP-43 accumulation in SGs during chronic disease are not understood. In this study we investigated the mechanism of TDP-43 processing and accumulation in SGs in SH-SY5Y neuronal-like cells exposed to chronic oxidative stress. Cell cultures were treated overnight with the mitochondrial inhibitor paraquat and examined for TDP-43 and SG processing. RESULTS: We found that mild stress induced by paraquat led to formation of TDP-43 and HuR-positive SGs, a proportion of which were ubiquitinated. The co-localization of TDP-43 with SGs could be fully prevented by inhibition of c-Jun N-terminal kinase (JNK). JNK inhibition did not prevent formation of HuR-positive SGs and did not prevent diffuse TDP-43 accumulation in the cytosol. In contrast, ERK or p38 inhibition prevented formation of both TDP-43 and HuR-positive SGs. JNK inhibition also inhibited TDP-43 SG localization in cells acutely treated with sodium arsenite and reduced the number of aggregates per cell in cultures transfected with C-terminal TDP-43 162-414 and 219-414 constructs. CONCLUSIONS: Our studies are the first to demonstrate a critical role for kinase control of TDP-43 accumulation in SGs and may have important implications for development of treatments for FTD and ALS, targeting cell signal pathway control of TDP-43 aggregation.
  • Item
    No Preview Available
    An impaired mitochondrial electron transport chain increases retention of the hypoxia imaging agent diacetylbis(4-methylthiosemicarbazonato)copperII
    Donnelly, PS ; Liddell, JR ; Lim, S ; Paterson, BM ; Cater, MA ; Savva, MS ; Mot, AI ; James, JL ; Trounce, IA ; White, AR ; Crouch, PJ (NATL ACAD SCIENCES, 2012-01-03)
    Radiolabeled diacetylbis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] is an effective positron-emission tomography imaging agent for myocardial ischemia, hypoxic tumors, and brain disorders with regionalized oxidative stress, such as mitochondrial myopathy, encephalopathy, and lactic acidosis with stroke-like episodes (MELAS) and Parkinson's disease. An excessively elevated reductive state is common to these conditions and has been proposed as an important mechanism affecting cellular retention of Cu from Cu(II)(atsm). However, data from whole-cell models to demonstrate this mechanism have not yet been provided. The present study used a unique cell culture model, mitochondrial xenocybrids, to provide whole-cell mechanistic data on cellular retention of Cu from Cu(II)(atsm). Genetic incompatibility between nuclear and mitochondrial encoded subunits of the mitochondrial electron transport chain (ETC) in xenocybrid cells compromises normal function of the ETC. As a consequence of this impairment to the ETC we show xenocybrid cells upregulate glycolytic ATP production and accumulate NADH. Compared to control cells the xenocybrid cells retained more Cu after being treated with Cu(II)(atsm). By transfecting the cells with a metal-responsive element reporter construct the increase in Cu retention was shown to involve a Cu(II)(atsm)-induced increase in intracellular bioavailable Cu specifically within the xenocybrid cells. Parallel experiments using cells grown under hypoxic conditions confirmed that a compromised ETC and elevated NADH levels contribute to increased cellular retention of Cu from Cu(II)(atsm). Using these cell culture models our data demonstrate that compromised ETC function, due to the absence of O(2) as the terminal electron acceptor or dysfunction of individual components of the ETC, is an important determinant in driving the intracellular dissociation of Cu(II)(atsm) that increases cellular retention of the Cu.
  • Item
    Thumbnail Image
    Inhibition of TDP-43 Accumulation by Bis(thiosemicarbazonato)-Copper Complexes
    Parker, SJ ; Meyerowitz, J ; James, JL ; Liddell, JR ; Nonaka, T ; Hasegawa, M ; Kanninen, KM ; Lim, S ; Paterson, BM ; Donnelly, PS ; Crouch, PJ ; White, AR ; Kahle, PJ (PUBLIC LIBRARY SCIENCE, 2012-08-03)
    Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, motor neuron disease with no effective long-term treatment options. Recently, TDP-43 has been identified as a key protein in the pathogenesis of some cases of ALS. Although the role of TDP-43 in motor neuron degeneration is not yet known, TDP-43 has been shown to accumulate in RNA stress granules (SGs) in cell models and in spinal cord tissue from ALS patients. The SG association may be an early pathological change to TDP-43 metabolism and as such a potential target for therapeutic intervention. Accumulation of TDP-43 in SGs induced by inhibition of mitochondrial activity can be inhibited by modulation of cellular kinase activity. We have also found that treatment of cells and animal models of neurodegeneration, including an ALS model, with bioavailable bis(thiosemicarbazonato)copper(II) complexes (Cu(II)(btsc)s) can modulate kinase activity and induce neuroprotective effects. In this study we examined the effect of diacetylbis(-methylthiosemicarbazonato)copper(II) (Cu(II)(atsm)) and glyoxalbis(-methylthiosemicarbazonato)copper(II) (Cu(II)(gtsm)) on TDP-43-positive SGs induced in SH-SY5Y cells in culture. We found that the Cu(II)(btsc)s blocked formation of TDP-43-and human antigen R (HuR)-positive SGs induced by paraquat. The Cu(II)(btsc)s protected neurons from paraquat-mediated cell death. These effects were associated with inhibition of ERK phosphorylation. Co-treatment of cultures with either Cu(II)(atsm) or an ERK inhibitor, PD98059 both prevented ERK activation and blocked formation of TDP-43-and HuR-positive SGs. Cu(II)(atsm) treatment or ERK inhibition also prevented abnormal ubiquitin accumulation in paraquat-treated cells suggesting a link between prolonged ERK activation and abnormal ubiquitin metabolism in paraquat stress and inhibition by Cu. Moreover, Cu(II)(atsm) reduced accumulation of C-terminal (219-414) TDP-43 in transfected SH-SY5Y cells. These results demonstrate that Cu(II)(btsc) complexes could potentially be developed as a neuroprotective agent to modulate neuronal kinase function and inhibit TDP-43 aggregation. Further studies in TDP-43 animal models are warranted.
  • Item
    Thumbnail Image
    The challenges of using a copper fluorescent sensor (CS1) to track intracellular distributions of copper in neuronal and glial cells
    Price, KA ; Hickey, JL ; Xiao, Z ; Wedd, AG ; James, SA ; Liddell, JR ; Crouch, PJ ; White, AR ; Donnelly, PS (ROYAL SOC CHEMISTRY, 2012)
  • Item
    Thumbnail Image
    Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease
    Liddell, JR ; Obando, D ; Liu, J ; Ganio, G ; Volitakis, I ; San Mok, S ; Crouch, PJ ; White, AR ; Codd, R (ELSEVIER SCIENCE INC, 2013-07)
    Parkinson disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra region of the brain. Iron content is also elevated in this region in PD and is implicated in the pathobiology of the disease. Desferrioxamine B (DFOB) is a high-affinity iron chelator and has shown efficacy in animal models of Parkinson disease. The high water solubility of DFOB, however, attenuates its ability to enter the brain. In this study, we have conjugated DFOB to derivatives of adamantane or the clinical iron chelator deferasirox to produce lipophilic compounds designed to increase the bioavailability of DFOB to brain cells. We found that the novel compounds are highly effective in preventing iron-mediated paraquat and hydrogen peroxide toxicity in neuronal-like BE2-M17 dopaminergic cells, primary neurons, and iron-loaded or glutathione-depleted primary astrocytes. The compounds also alleviated paraquat toxicity in BE2-M17 cells that express the PD-causing A30P mutation of α-synuclein. This protection was ∼66-fold more potent than DFOB alone and also more effective than other cell-permeative metal chelators, clioquinol and phenanthroline. These results demonstrate that increasing the bioavailability of DFOB through the conjugation of lipophilic fragments greatly enhances its protective capacity. These novel compounds have potential as therapeutics for the treatment of PD and other conditions of Fe dyshomeostasis.
  • Item
    No Preview Available
    Mitochondrial metals as a potential therapeutic target in neurodegeneration
    Grubman, A ; White, AR ; Liddell, JR (WILEY, 2014-04)
    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders.
  • Item
    Thumbnail Image
    X-ray fluorescence imaging reveals subcellular biometal disturbances in a childhood neurodegenerative disorder
    Grubman, A ; James, SA ; James, J ; Duncan, C ; Volitakis, I ; Hickey, JL ; Crouch, PJ ; Donnelly, PS ; Kanninen, KM ; Liddell, JR ; Cotman, SL ; de Jonge, MD ; White, AR (ROYAL SOC CHEMISTRY, 2014)
    Biometals such as zinc, iron, copper and calcium play key roles in diverse physiological processes in the brain, but can be toxic in excess. A hallmark of neurodegeneration is a failure of homeostatic mechanisms controlling the concentration and distribution of these elements, resulting in overload, deficiency or mislocalization. A major roadblock to understanding the impact of altered biometal homeostasis in neurodegenerative disease is the lack of rapid, specific and sensitive techniques capable of providing quantitative subcellular information on biometal homeostasis in situ. Recent advances in X-ray fluorescence detectors have provided an opportunity to rapidly measure biometal content at subcellular resolution in cell populations using X-ray Fluorescence Microscopy (XFM). We applied this approach to investigate subcellular biometal homeostasis in a cerebellar cell line isolated from a natural mouse model of a childhood neurodegenerative disorder, the CLN6 form of neuronal ceroid lipofuscinosis, commonly known as Batten disease. Despite no global changes to whole cell concentrations of zinc or calcium, XFM revealed significant subcellular mislocalization of these important biological second messengers in cerebellar Cln6nclf (CbCln6nclf ) cells. XFM revealed that nuclear-to-cytoplasmic trafficking of zinc was severely perturbed in diseased cells and the subcellular distribution of calcium was drastically altered in CbCln6nclf cells. Subtle differences in the zinc K-edge X-ray Absorption Near Edge Structure (XANES) spectra of control and CbCln6nclf cells suggested that impaired zinc homeostasis may be associated with an altered ligand set in CbCln6nclf cells. Importantly, a zinc-complex, ZnII(atsm), restored the nuclear-to-cytoplasmic zinc ratios in CbCln6nclf cells via nuclear zinc delivery, and restored the relationship between subcellular zinc and calcium levels to that observed in healthy control cells. ZnII(atsm) treatment also resulted in a reduction in the number of calcium-rich puncta observed in CbCln6nclf cells. This study highlights the complementarities of bulk and single cell analysis of metal content for understanding disease states. We demonstrate the utility and broad applicability of XFM for subcellular analysis of perturbed biometal metabolism and mechanism of action studies for novel therapeutics to target neurodegeneration.
  • Item
    No Preview Available
    ZnII(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism
    McAllum, EJ ; Roberts, BR ; Hickey, JL ; Dang, TN ; Grubman, A ; Donnelly, PS ; Liddell, JR ; White, AR ; Crouch, PJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-09)
    Mutations in the metalloprotein Cu,Zn-superoxide dismutase (SOD1) cause approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease for which effective therapeutics do not yet exist. Transgenic rodent models based on over-expression of mutant SOD1 have been developed and these have provided opportunity to test new therapeutic strategies and to study the mechanisms of mutant SOD1 toxicity. Although the mechanisms of mutant SOD1 toxicity are yet to be fully elucidated, incorrect or incomplete metallation of SOD1 confers abnormal folding, aggregation and biochemical properties, and improving the metallation state of SOD1 provides a viable therapeutic option. The therapeutic effects of delivering copper (Cu) to mutant SOD1 have been demonstrated recently. The aim of the current study was to determine if delivery of zinc (Zn) to SOD1 was also therapeutic. To investigate this, SOD1G37R mice were treated with the metal complex diacetyl-bis(4-methylthiosemicarbazonato)zinc(II) [Zn(II)(atsm)]. Treatment resulted in an improvement in locomotor function and survival of the mice. However, biochemical analysis of spinal cord tissue collected from the mice revealed that the treatment did not increase overall Zn levels in the spinal cord nor the Zn content of SOD1. In contrast, overall levels of Cu in the spinal cord were elevated in the Zn(II)(atsm)-treated SOD1G37R mice and the Cu content of SOD1 was also elevated. Further experiments demonstrated transmetallation of Zn(II)(atsm) in the presence of Cu to form the Cu-analogue Cu(II)(atsm), indicating that the observed therapeutic effects for Zn(II)(atsm) in SOD1G37R mice may in fact be due to in vivo transmetallation and subsequent delivery of Cu.
  • Item
    No Preview Available
    Circumventing the Crabtree Effect: A method to induce lactate consumption and increase oxidative phosphorylation in cell culture
    Mot, AI ; Liddell, JR ; White, AR ; Crouch, PJ (PERGAMON-ELSEVIER SCIENCE LTD, 2016-10)
    Most cells grown in glucose-containing medium generate almost all their ATP via glycolysis despite abundant oxygen supply and functional mitochondria, a phenomenon known as the Crabtree effect. By contrast, most cells within the body rely on mitochondrial oxidative phosphorylation (OXPHOS) to generate the bulk of their energy supply. Thus, when utilising the accessibility of cell culture to elucidate fundamental elements of mitochondria in health and disease, it is advantageous to adopt culture conditions under which the cells have greater reliance upon OXPHOS for the supply of their energy needs. Substituting galactose for glucose in the culture medium can provide these conditions, but additional benefit can be gained from alternate in vitro models. Herein we describe culture conditions in which complete autonomous depletion of medium glucose induces a lactate-consuming phase marked by increased MitoTracker Deep Red staining intensity, increased expression of Kreb's cycle proteins, increased expression of electron transport chain subunits, and increased sensitivity to the OXPHOS inhibitor rotenone. We propose these culture conditions represent an alternate accessible model for the in vitro study of cellular processes and diseases involving the mitochondrion without limitations incurred via the Crabtree effect.