Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Editorial: Neuronal Co-transmission
    Apergis-Schoute, J ; Burnstock, G ; Nusbaum, MP ; Parker, D ; Morales, MA ; Trudeau, L-E ; Svensson, E (FRONTIERS MEDIA SA, 2019-03-26)
  • Item
    Thumbnail Image
    Unlocking the Potential of Purinergic Signaling in Transplantation
    Zeiser, R ; Robson, SC ; Vaikunthanathan, T ; Dworak, M ; Burnstock, G (WILEY, 2016-10)
    Purinergic signaling has been recognized as playing an important role in inflammation, angiogenesis, malignancy, diabetes and neural transmission. Activation of signaling pathways downstream from purinergic receptors may also be implicated in transplantation and related vascular injury. Following transplantation, the proinflammatory "danger signal" adenosine triphosphate (ATP) is released from damaged cells and promotes proliferation and activation of a variety of immune cells. Targeting purinergic signaling pathways may promote immunosuppression and ameliorate inflammation. Under pathophysiological conditions, nucleotide-scavenging ectonucleotidases CD39 and CD73 hydrolyze ATP, ultimately, to the anti-inflammatory mediator adenosine. Adenosine suppresses proinflammatory cytokine production and is associated with improved graft survival and decreased severity of graft-versus-host disease. Furthermore, purinergic signaling is involved both directly and indirectly in the mechanism of action of several existing immunosuppressive drugs, such as calcineurin inhibitors and mammalian target of rapamycin inhibitors. Targeting of purinergic receptor pathways, particularly in the setting of combination therapies, could become a valuable immunosuppressive strategy in transplantation. This review focuses on the role of the purinergic signaling pathway in transplantation and immunosuppression and explores possible future applications in clinical practice.
  • Item
    Thumbnail Image
    THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview.
    Alexander, SP ; Kelly, E ; Marrion, NV ; Peters, JA ; Faccenda, E ; Harding, SD ; Pawson, AJ ; Sharman, JL ; Southan, C ; Buneman, OP ; Cidlowski, JA ; Christopoulos, A ; Davenport, AP ; Fabbro, D ; Spedding, M ; Striessnig, J ; Davies, JA ; CGTP Collaborators, (Wiley, 2017-12)
    The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  • Item
    Thumbnail Image
    The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression
    Burnstock, G ; Knight, GE (SPRINGER, 2018-03)
    Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.
  • Item
    Thumbnail Image
    Purinergic signalling and diabetes
    Burnstock, G ; Novak, I (SPRINGER, 2013-09)
    The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic signalling, we will focus on the role of purinergic signalling and its changes associated with diabetes in the pancreas and selected tissues/organ systems affected by hyperglycaemia and other stress molecules of diabetes. Since this is the first review of this kind, a comprehensive historical angle is taken, and common and divergent roles of receptors for nucleotides and nucleosides in different organ systems will be given. This integrated picture will aid our understanding of the challenges of the potential and currently used drugs targeted to specific organ/cells or disorders associated with diabetes.
  • Item
    Thumbnail Image
    Purinergic signalling and immune cells
    Burnstock, G ; Boeynaems, J-M (SPRINGER, 2014-12)
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
  • Item
    Thumbnail Image
    Introduction and perspective, historical note
    Burnstock, G (FRONTIERS MEDIA SA, 2013-11-21)
    P2 nucleotide receptors were proposed to consist of two subfamilies based on pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following cloning of the receptors for nucleotides and studies of transduction mechanisms in the early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed on many types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune modulation. The emphasis in this review will be on the pathophysiology of P2X receptors and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome, diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special senses, airways, skin, cardiovascular, and musculoskeletal systems.
  • Item
    Thumbnail Image
    Link between Cancer and Alzheimer Disease via Oxidative Stress Induced by Nitric Oxide-Dependent Mitochondrial DNA Overproliferation and Deletion
    Aliev, G ; Obrenovich, ME ; Tabrez, S ; Jabir, NR ; Reddy, VP ; Li, Y ; Burnstock, G ; Cacabelos, R ; Kamal, MA (HINDAWI LTD, 2013)
    Nitric oxide- (NO-) dependent oxidative stress results in mitochondrial ultrastructural alterations and DNA damage in cases of Alzheimer disease (AD). However, little is known about these pathways in human cancers, especially during the development as well as the progression of primary brain tumors and metastatic colorectal cancer. One of the key features of tumors is the deficiency in tissue energy that accompanies mitochondrial lesions and formation of the hypoxic smaller sized mitochondria with ultrastructural abnormalities. We speculate that mitochondrial involvement may play a significant role in the etiopathogenesis of cancer. Recent studies also demonstrate a potential link between AD and cancer, and anticancer drugs are being explored for the inhibition of AD-like pathology in transgenic mice. Severity of the cancer growth, metastasis, and brain pathology in AD (in animal models that mimic human AD) correlate with the degree of mitochondrial ultrastructural abnormalities. Recent advances in the cell-cycle reentry of the terminally differentiated neuronal cells indicate that NO-dependent mitochondrial abnormal activities and mitotic cell division are not the only important pathogenic factors in pathogenesis of cancer and AD, but open a new window for the development of novel treatment strategies for these devastating diseases.
  • Item
    Thumbnail Image
    Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain
    Li, N ; Lu, Z-Y ; Yu, L-H ; Burnstock, G ; Deng, X-M ; Ma, B (BIOMED CENTRAL LTD, 2014-03-18)
    BACKGROUNDS: ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y₂ receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y₂ receptors in pain behaviour. RESULTS: In control rats: 1) UTP, an agonist of P2Y₂/P2Y₄ receptors, caused a significant decrease in the mean threshold intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons. 2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y₂ receptors by suramin or injection of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats. 3) Injection of P2Y₂ receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia. CONCLUSIONS: Our data suggest that inhibition of P2Y₂ receptors leads to down-regulation of ERK-mediated phosphorylation and increase of the expression of I(A)-related Kv channels in trigeminal ganglion neurons, which might contribute to the clinical treatment of trigeminal neuropathic pain.
  • Item
    Thumbnail Image
    Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death
    Burnstock, G ; Verkhratsky, A (NATURE PUBLISHING GROUP, 2010-01)
    The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer.