Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord.
    Trist, BG ; Genoud, S ; Roudeau, S ; Rookyard, A ; Abdeen, A ; Cottam, V ; Hare, DJ ; White, M ; Altvater, J ; Fifita, JA ; Hogan, A ; Grima, N ; Blair, IP ; Kysenius, K ; Crouch, PJ ; Carmona, A ; Rufin, Y ; Claverol, S ; Van Malderen, S ; Falkenberg, G ; Paterson, DJ ; Smith, B ; Troakes, C ; Vance, C ; Shaw, CE ; Al-Sarraj, S ; Cordwell, S ; Halliday, G ; Ortega, R ; Double, KL (Oxford University Press (OUP), 2022-09-14)
    Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial amyotrophic lateral sclerosis cases, and sporadic amyotrophic lateral sclerosis cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in amyotrophic lateral sclerosis cases, and clearly differentiated all forms of amyotrophic lateral sclerosis from controls. Substantial heterogeneity in the presence of these changes was also observed between amyotrophic lateral sclerosis cases. Our data demonstrate that varying forms of SOD1 proteinopathy are a common feature of all forms of amyotrophic lateral sclerosis, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in amyotrophic lateral sclerosis. Most of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.
  • Item
    Thumbnail Image
    Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy
    Alves, FM ; Kysenius, K ; Caldow, MK ; Hardee, JP ; Chung, JD ; Trieu, J ; Hare, DJ ; Crouch, PJ ; Ayton, S ; Bush, A ; Lynch, GS ; Koopman, R (WILEY, 2022-06)
    BACKGROUND: Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity. METHODS: We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed. RESULTS: We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology. CONCLUSIONS: Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.
  • Item
    Thumbnail Image
    An integrated mass spectrometry imaging and digital pathology workflow for objective detection of colorectal tumours by unique atomic signatures
    Paul, B ; Kysenius, K ; Hilton, JB ; Jones, MWM ; Hutchinson, RW ; Buchanan, DD ; Rosty, C ; Fryer, F ; Bush, A ; Hergt, JM ; Woodhead, JD ; Bishop, DP ; Doble, PA ; Hill, MM ; Crouch, PJ ; Hare, DJ (ROYAL SOC CHEMISTRY, 2021-08-14)
    Tumours are abnormal growths of cells that reproduce by redirecting essential nutrients and resources from surrounding tissue. Changes to cell metabolism that trigger the growth of tumours are reflected in subtle differences between the chemical composition of healthy and malignant cells. We used LA-ICP-MS imaging to investigate whether these chemical differences can be used to spatially identify tumours and support detection of primary colorectal tumours in anatomical pathology. First, we generated quantitative LA-ICP-MS images of three colorectal surgical resections with case-matched normal intestinal wall tissue and used this data in a Monte Carlo optimisation experiment to develop an algorithm that can classify pixels as tumour positive or negative. Blinded testing and interrogation of LA-ICP-MS images with micrographs of haematoxylin and eosin stained and Ki67 immunolabelled sections revealed Monte Carlo optimisation accurately identified primary tumour cells, as well as returning false positive pixels in areas of high cell proliferation. We analysed an additional 11 surgical resections of primary colorectal tumours and re-developed our image processing method to include a random forest regression machine learning model to correctly identify heterogenous tumours and exclude false positive pixels in images of non-malignant tissue. Our final model used over 1.6 billion calculations to correctly discern healthy cells from various types and stages of invasive colorectal tumours. The imaging mass spectrometry and data analysis methods described, developed in partnership with clinical cancer researchers, have the potential to further support cancer detection as part of a comprehensive digital pathology approach to cancer care through validation of a new chemical biomarker of tumour cells.
  • Item
    Thumbnail Image
    Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic
    Trist, BG ; Hilton, JB ; Hare, DJ ; Crouch, PJ ; Double, KL (WILEY-V C H VERLAG GMBH, 2021-04-19)
    Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
  • Item
    Thumbnail Image
    Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)
    Hare, DJ ; Kysenius, K ; Paul, B ; Knauer, B ; Hutchinson, RW ; O'Connor, C ; Fryer, F ; Hennessey, TP ; Bush, AI ; Crouch, PJ ; Doble, PA (JOURNAL OF VISUALIZED EXPERIMENTS, 2017-01-01)
    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures.
  • Item
    Thumbnail Image
    Stabilization of Nontoxic Aβ-Oligomers: Insights into the Mechanism of Action of Hydroxyquinolines in Alzheimer's Disease
    Ryan, TM ; Roberts, BR ; McColl, G ; Hare, DJ ; Doble, PA ; Li, Q-X ; Lind, M ; Roberts, AM ; Mertens, HDT ; Kirby, N ; Pham, CLL ; Hinds, MG ; Adlard, PA ; Barnham, KJ ; Curtain, CC ; Masters, CL (SOC NEUROSCIENCE, 2015-02-18)
    The extracellular accumulation of amyloid β (Aβ) peptides is characteristic of Alzheimer's disease (AD). However, formation of diffusible, oligomeric forms of Aβ, both on and off pathways to amyloid fibrils, is thought to include neurotoxic species responsible for synaptic loss and neurodegeneration, rather than polymeric amyloid aggregates. The 8-hydroxyquinolines (8-HQ) clioquinol (CQ) and PBT2 were developed for their ability to inhibit metal-mediated generation of reactive oxygen species from Aβ:Cu complexes and have both undergone preclinical and Phase II clinical development for the treatment of AD. Their respective modes of action are not fully understood and may include both inhibition of Aβ fibrillar polymerization and direct depolymerization of existing Aβ fibrils. In the present study, we find that CQ and PBT2 can interact directly with Aβ and affect its propensity to aggregate. Using a combination of biophysical techniques, we demonstrate that, in the presence of these 8-HQs and in the absence of metal ions, Aβ associates with two 8-HQ molecules and forms a dimer. Furthermore, 8-HQ bind Aβ with an affinity of 1-10 μm and suppress the formation of large (>30 kDa) oligomers. The stabilized low molecular weight species are nontoxic. Treatment with 8-HQs also reduces the levels of in vivo soluble oligomers in a Caenorhabditis elegans model of Aβ toxicity. We propose that 8-HQs possess an additional mechanism of action that neutralizes neurotoxic Aβ oligomer formation through stabilization of small (dimeric) nontoxic Aβ conformers.
  • Item
    Thumbnail Image
    Traumatic brain injury induces elevation of Co in the human brain
    Roberts, BR ; Hare, DJ ; McLean, CA ; Conquest, A ; Lind, M ; Li, Q-X ; Bush, AI ; Masters, CL ; Morganti-Kossmann, M-C ; Frugier, T (ROYAL SOC CHEMISTRY, 2015)
    Traumatic brain injury (TBI) is the most common cause of death and disability in young adults, yet the molecular mechanisms that follow TBI are poorly understood. We previously reported a perturbation in iron (Fe) levels following TBI. Here we report that the distribution of cobalt (Co) is modulated in post-mortem human brain following injury. We also investigated how the distribution of other biologically relevant elements changes in TBI. Cobalt is increased due to TBI while copper (Cu), magnesium (Mg), manganese (Mn), phosphorus (P), potassium (K), rubidium (Rb), selenium (Se) and zinc (Zn) remain unchanged. The elevated Co has important implications for positron emission tomography neuroimaging. This is the first demonstration of the accumulation of Co in injured tissue explaining the previous utility of (55)Co-PET imaging in TBI.
  • Item
    Thumbnail Image
    Oral Treatment with CuII(atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
    Roberts, BR ; Lim, NKH ; McAllum, EJ ; Donnelly, PS ; Hare, DJ ; Doble, PA ; Turner, BJ ; Price, KA ; Lim, SC ; Paterson, BM ; Hickey, JL ; Rhoads, TW ; Williams, JR ; Kanninen, KM ; Hung, LW ; Liddell, JR ; Grubman, A ; Monty, J-F ; Llanos, RM ; Kramer, DR ; Mercer, JFB ; Bush, AI ; Masters, CL ; Duce, JA ; Li, Q-X ; Beckman, JS ; Barnham, KJ ; White, AR ; Crouch, PJ (SOC NEUROSCIENCE, 2014-06-04)
    Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.