Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity
    Xia, YC ; Radwan, A ; Keenan, CR ; Langenbach, SY ; Li, M ; Radojicic, D ; Londrigan, SL ; Gualano, RC ; Stewart, AG ; Schnell, MJ (PUBLIC LIBRARY SCIENCE, 2017-01)
    Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-β (TGF-β) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-β. In the current study, we examine the contribution of TGF-β activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-β expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFβRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-β activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-β.
  • Item
    Thumbnail Image
    A Non-canonical Pathway with Potential for Safer Modulation of Transforming Growth Factor-β1 in Steroid-Resistant Airway Diseases
    Li, M ; Keenan, CR ; Lopez-Campos, G ; Mangum, JE ; Chen, Q ; Prodanovic, D ; Xia, YC ; Langenbach, SY ; Harris, T ; Hofferek, V ; Reid, GE ; Stewart, AG (CELL PRESS, 2019-02-22)
    Impaired therapeutic responses to anti-inflammatory glucocorticoids (GC) in chronic respiratory diseases are partly attributable to interleukins and transforming growth factor β1 (TGF-β1). However, previous efforts to prevent induction of GC insensitivity by targeting established canonical and non-canonical TGF-β1 pathways have been unsuccessful. Here we elucidate a TGF-β1 signaling pathway modulating GC activity that involves LIM domain kinase 2-mediated phosphorylation of cofilin1. Severe, steroid-resistant asthmatic airway epithelium showed increased levels of immunoreactive phospho-cofilin1. Phospho-cofilin1 was implicated in the activation of phospholipase D (PLD) to generate the effector(s) (lyso)phosphatidic acid, which mimics the TGF-β1-induced GC insensitivity. TGF-β1 induction of the nuclear hormone receptor corepressor, SMRT (NCOR2), was dependent on cofilin1 and PLD activities. Depletion of SMRT prevented GC insensitivity. This pathway for GC insensitivity offers several promising drug targets that potentially enable a safer approach to the modulation of TGF-β1 in chronic inflammatory diseases than is afforded by global TGF-β1 inhibition.
  • Item
    Thumbnail Image
    Casein Kinase 1δ/ε Inhibitor, PF670462 Attenuates the Fibrogenic Effects of Transforming Growth Factor-β in Pulmonary Fibrosis
    Keenan, CR ; Langenbach, SY ; Jativa, F ; Harris, T ; Li, M ; Chen, Q ; Xia, Y ; Gao, B ; Schuliga, MJ ; Jaffar, J ; Prodanovic, D ; Tu, Y ; Berhan, A ; Lee, PVS ; Westall, GP ; Stewart, AG (FRONTIERS MEDIA SA, 2018-07-10)
    Transforming growth factor-beta (TGF-β) is a major mediator of fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). However, therapeutic global inhibition of TGF-β is limited by unwanted immunosuppression and mitral valve defects. We performed an extensive literature search to uncover a little-known connection between TGF-β signaling and casein kinase (CK) activity. We have examined the abundance of CK1 delta and epsilon (CK1δ/ε) in lung tissue from IPF patients and non-diseased controls, and investigated whether inhibition of CK1δ/ε with PF670462 inhibits pulmonary fibrosis. CK1δ/ε levels in lung tissue from IPF patients and non-diseased controls were assessed by immunohistochemistry. Anti-fibrotic effects of the CK1δ/ε inhibitor PF670462 were assessed in pre-clinical models, including acute and chronic bleomycin mouse models and in vitro experiments on spheroids made from primary human lung fibroblast cells from IPF and control donors, and human A549 alveolar-like adenocarcinoma-derived epithelial cells. Increased expression of CK1δ and ε in IPF lungs compared to non-diseased controls was accompanied by increased levels of the product, phospho-period 2. In vitro, PF670462 prevented TGF-β-induced epithelial-mesenchymal transition. The stiffness of IPF-derived spheroids was reduced by PF670462 and TGF-β-induced fibrogenic gene expression was inhibited. The CK1δ/ε inhibitor PF670462 administered systemically or locally by inhalation prevented both acute and chronic bleomycin-induced pulmonary fibrosis in mice. PF670462 administered in a 'therapeutic' regimen (day 7 onward) prevented bleomycin-induced lung collagen accumulation. Elevated expression and activity of CK1 δ and ε in IPF and anti-fibrogenic effects of the dual CK1δ/ε inhibitor, PF670462, support CK1δ/ε as novel therapeutic targets for IPF.
  • Item
    Thumbnail Image
    Bronchial epithelial cells are rendered insensitive to glucocorticoid transactivation by transforming growth factor-β1
    Keenan, CR ; Mok, JSL ; Harris, T ; Xia, Y ; Salem, S ; Stewart, AG (BIOMED CENTRAL LTD, 2014-05-01)
    BACKGROUND: We have previously shown that transforming growth factor-beta (TGF-beta) impairs glucocorticoid (GC) function in pulmonary epithelial cell-lines. However, the signalling cascade leading to this impairment is unknown. In the present study, we provide the first evidence that TGF-beta impairs GC action in differentiated primary air-liquid interface (ALI) human bronchial epithelial cells (HBECs). Using the BEAS-2B bronchial epithelial cell line, we also present a systematic examination of the known pathways activated by TGF-beta, in order to ascertain the molecular mechanism through which TGF-beta impairs epithelial GC action. METHODS: GC transactivation was measured using a Glucocorticoid Response Element (GRE)-Secreted embryonic alkaline phosphatase (SEAP) reporter and measuring GC-inducible gene expression by qRT-PCR. GC transrepression was measured by examining GC regulation of pro-inflammatory mediators. TGF-beta signalling pathways were investigated using siRNA and small molecule kinase inhibitors. GRα level, phosphorylation and sub-cellular localisation were determined by western blotting, immunocytochemistry and localisation of GRα-Yellow Fluorescent Protein (YFP). Data are presented as the mean ± SEM for n independent experiments in cell lines, or for experiments on primary HBEC cells from n individual donors. All data were statistically analysed using GraphPad Prism 5.0 (Graphpad, San Diego, CA). In most cases, two-way analyses of variance (ANOVA) with Bonferroni post-hoc tests were used to analyse the data. In all cases, P <0.05 was considered to be statistically significant. RESULTS: TGF-beta impaired Glucocorticoid Response Element (GRE) activation and the GC induction of several anti-inflammatory genes, but did not broadly impair the regulation of pro-inflammatory gene expression in A549 and BEAS-2B cell lines. TGF-beta-impairment of GC transactivation was also observed in differentiated primary HBECs. The TGF-beta receptor (ALK5) inhibitor SB431541 fully prevented the GC transactivation impairment in the BEAS-2B cell line. However, neither inhibitors of the known downstream non-canonical signalling pathways, nor knocking down Smad4 by siRNA prevented the TGF-beta impairment of GC activity. CONCLUSIONS: Our results indicate that TGF-beta profoundly impairs GC transactivation in bronchial epithelial cells through activating ALK5, but not through known non-canonical pathways, nor through Smad4-dependent signalling, suggesting that TGF-beta may impair GC action through a novel non-canonical signalling mechanism.
  • Item
    Thumbnail Image
    Plasminogen-stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin A2, involving plasmin-activated cell signalling
    Stewart, AG ; Xia, YC ; Harris, T ; Royce, S ; Hamilton, JA ; Schuliga, M (WILEY-BLACKWELL, 2013-12)
    BACKGROUND AND PURPOSE: The conversion of plasminogen into plasmin by interstitial urokinase plasminogen activator (uPA) is potentially important in asthma pathophysiology. In this study, the effect of uPA-mediated plasminogen activation on airway smooth muscle (ASM) cell proliferation was investigated. EXPERIMENTAL APPROACH: Human ASM cells were incubated with plasminogen (0.5-50 μg·mL(-1) ) or plasmin (0.5-50 mU·mL(-1) ) in the presence of pharmacological inhibitors, including UK122, an inhibitor of uPA. Proliferation was assessed by increases in cell number or MTT reduction after 48 h incubation with plasmin(ogen), and by earlier increases in [(3) H]-thymidine incorporation and cyclin D1 expression. KEY RESULTS: Plasminogen (5 μg·mL(-1) )-stimulated increases in cell proliferation were attenuated by UK122 (10 μM) or by transfection with uPA gene-specific siRNA. Exogenous plasmin (5 mU·mL(-1) ) also stimulated increases in cell proliferation. Inhibition of plasmin-stimulated ERK1/2 or PI3K/Akt signalling attenuated plasmin-stimulated increases in ASM proliferation. Furthermore, pharmacological inhibition of cell signalling mediated by the EGF receptor, a receptor trans-activated by plasmin, also reduced plasmin(ogen)-stimulated cell proliferation. Knock down of annexin A2, which has dual roles in both plasminogen activation and plasmin-signal transduction, also attenuated ASM cell proliferation following incubation with either plasminogen or plasmin. CONCLUSIONS AND IMPLICATIONS: Plasminogen stimulates ASM cell proliferation in a manner mediated by uPA and involving multiple signalling pathways downstream of plasmin. Targeting mediators of plasminogen-evoked ASM responses, such as uPA or annexin A2, may be useful in the treatment of asthma.
  • Item
    No Preview Available
    Plasminogen-Stimulated Inflammatory Cytokine Production by Airway Smooth Muscle Cells Is Regulated by Annexin A2
    Schuliga, M ; Langenbach, S ; Xia, YC ; Qin, C ; Mok, JSL ; Harris, T ; Mackay, GA ; Medcalf, RL ; Stewart, AG (AMER THORACIC SOC, 2013-11)
    Plasminogen has a role in airway inflammation. Airway smooth muscle (ASM) cells cleave plasminogen into plasmin, a protease with proinflammatory activity. In this study, the effect of plasminogen on cytokine production by human ASM cells was investigated in vitro. Levels of IL-6 and IL-8 in the medium of ASM cells were increased by incubation with plasminogen (5-50 μg/ml) for 24 hours (P < 0.05; n = 6-9), corresponding to changes in the levels of cytokine mRNA at 4 hours. The effects of plasminogen were attenuated by α2-antiplasmin (1 μg/ml), a plasmin inhibitor (P < 0.05; n = 6-12). Exogenous plasmin (5-15 mU/ml) also stimulated cytokine production (P < 0.05; n = 6-8) in a manner sensitive to serine-protease inhibition by aprotinin (10 KIU/ml). Plasminogen-stimulated cytokine production was increased in cells pretreated with basic fibroblast growth factor (300 pM) in a manner associated with increases in urokinase plasminogen activator expression and plasmin formation. The knockdown of annexin A2, a component of the putative plasminogen receptor comprised of annexin A2 and S100A10, attenuated plasminogen conversion into plasmin and plasmin-stimulated cytokine production by ASM cells. Moreover, a role for annexin A2 in airway inflammation was demonstrated in annexin A2-/- mice in which antigen-induced increases in inflammatory cell number and IL-6 levels in the bronchoalveolar lavage fluid were reduced (P < 0.01; n = 10-14). In conclusion, plasminogen stimulates ASM cytokine production in a manner regulated by annexin A2. Our study shows for the first time that targeting annexin A2-mediated signaling may provide a novel therapeutic approach to the treatment of airway inflammation in diseases such as chronic asthma.
  • Item
    No Preview Available
    Transforming Growth Factor-β-Induced Differentiation of Airway Smooth Muscle Cells Is Inhibited by Fibroblast Growth Factor-2
    Schuliga, M ; Javeed, A ; Harris, T ; Xia, Y ; Qin, C ; Wang, Z ; Zhang, X ; Lee, PVS ; Camoretti-Mercado, B ; Stewart, AG (AMER THORACIC SOC, 2013-03)
    In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor-β (TGF-β)-stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-β-stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction-dependent manner. The abundance of ordered α-smooth muscle actin (α-SMA) filaments formed in the presence of TGF-β were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-β-stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-β-stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml(-1)), exerted no effect on TGF-β-regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-β treatment, still reduced contractile protein expression, even when the TGF-β-receptor kinase inhibitor, SB431542 (10 μM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-β is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.