Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 33
  • Item
    Thumbnail Image
    Type-I interferons in Parkinson's disease: innate inflammatory response drives fate of neurons in model of degenerative brain disorder: An editorial comment on 'Type-I interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone'
    Kanninen, KM ; White, AR (WILEY, 2017-04-01)
    Read the commented article 'Type-I interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone' on page 75.
  • Item
    No Preview Available
    Failure of Autophagy-Lysosomal Pathways in Rod Photoreceptors Causes the Early Retinal Degeneration Phenotype Observed in Cln6(nclf) Mice
    von Eisenhart-Rothe, P ; Grubman, A ; Greferath, U ; Fothergill, LJ ; Jobling, A ; Phipps, JA ; White, AR ; Fletcher, EL ; Vessey, KA (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2018-10-01)
    Purpose: Vision loss caused by photoreceptor death represents one of the first symptoms in neuronal ceroid lipofuscinosis, a condition characterized by accumulation of intracellular waste. Cln6nclf mice have a naturally occurring mutation in ceroid-lipofuscinosis neuronal (CLN) protein 6 and are a model of this disorder. In order to identify the effect intracellular waste (lipofuscin) accumulation plays in driving retinal degeneration, the time course of degeneration was carefully characterized functionally using the electroretinogram and structurally using histology. Methods: Cln6nclf and C57BL/6J, wild-type, mice were studied at postnatal day 18 (P18), P30, P60, P120, and P240, and retinal degeneration was correlated with changes in the retinal pigment epithelial (RPE) and neuronal autophagy-lysosomal pathways using super-resolution microscopy. Results: In Cln6nclf mice there was significant loss of rod photoreceptor function at P18, prior to photoreceptor nuclei loss at P60. In contrast, cone pathway function was not affected until P240. The loss of rod photoreceptor function correlated with significant disruption of the autophagy-lysosomal degradation pathways within photoreceptors, but not in the RPE or other retinal neurons. Additionally, there was cytosolic accumulation of P62 and undigested mitochondrial-derived, ATP synthase subunit C in the photoreceptor layers of Cln6nclf mice at P30. Conclusions: These results suggest that rod photoreceptors have an increased sensitivity to disturbances in the autophagy-lysosomal pathway and the subsequent failure of mitochondrial turnover, relative to other retinal cells. It is likely that primary failure of the rod photoreceptors rather than the RPE or other retinal neurons underlies the early visual dysfunction that occurs in the Cln6nclf mouse model.
  • Item
    Thumbnail Image
    Metal-deficient SOD1 in amyotrophic lateral sclerosis
    Hilton, JB ; White, AR ; Crouch, PJ (SPRINGER, 2015-05-01)
    Mutations to the ubiquitous antioxidant enzyme Cu/Zn superoxide dismutase (SOD1) were the first established genetic cause of the fatal, adult-onset neurodegenerative disease amyotrophic lateral sclerosis (ALS). It is widely accepted that these mutations do not cause ALS via a loss of antioxidant function, but elucidating the alternate toxic gain of function has proven to be elusive. Under physiological conditions, SOD1 binds one copper ion and one zinc ion per monomer to form a highly stable and functional homodimer, but there is now ample evidence to indicate aberrant persistence of SOD1 in an intermediate metal-deficient state may contribute to the protein's involvement in ALS. This review briefly discusses some of the data to support a role for metal-deficient SOD1 in the development of ALS and some of the outcomes from drug development studies that have aimed to modify the symptoms of ALS by targeting the metal state of SOD1. The implications for the metal state of SOD1 in cases of sporadic ALS that do not involve mutant SOD1 are also discussed.
  • Item
    No Preview Available
    Metals and Alzheimer's disease
    Adlard, PA ; Bush, AI (IOS PRESS, 2006-11-01)
    There is increasing evidence to support a role for both the amyloid beta-protein precursor (AbetaPP) and its proteolytic fragment, amyloid beta (Abeta), in metal ion homeostasis. Furthermore, metal ions such as zinc and copper can interact with both AbetaPP and Abeta to potentiate Alzheimer's disease by participating in the aggregation of these normal cellular proteins and in the generation of reactive oxygen species. In addition, metal ions may interact on several other AD-related pathways, including those involved in neurofibrillary tangle formation, secretase cleavage of AbetaPP and proteolytic degradation of Abeta. As such, a dysregulation of metal ion homeostasis, as occurs with both aging and in AD, may foster an environment that can both precipitate and accelerate degenerative conditions such as AD. This offers a broad biochemical front for novel therapeutic interventions.
  • Item
    No Preview Available
    Effect of Metal Chelators on γ-Secretase Indicates That Calcium and Magnesium Ions Facilitate Cleavage of Alzheimer Amyloid Precursor Substrate.
    Ho, M ; Hoke, DE ; Chua, YJ ; Li, Q-X ; Culvenor, JG ; Masters, C ; White, AR ; Evin, G (Hindawi Limited, 2010-12-28)
    Gamma-secretase is involved in the production of Aβ amyloid peptides. It cleaves the transmembrane domain of the amyloid precursor protein (APP) at alternative sites to produce Aβ and the APP intracellular domain (AICD). Metal ions play an important role in Aβ aggregation and metabolism, thus metal chelators and ligands represent potential therapeutic agents for AD treatment. A direct effect of metal chelators on γ-secretase has not yet been investigated. The authors used an in vitro  γ-secretase assay consisting of cleavage of APP C100-3XFLAG by endogenous γ-secretase from rodent brains and human neuroblastoma SH-SY5Y, and detected AICD production by western blotting. Adding metalloprotease inhibitors to the reaction showed that clioquinol, phosphoramidon, and zinc metalloprotease inhibitors had no significant effect on γ-secretase activity. In contrast, phenanthroline, EDTA, and EGTA markedly decreased γ-secretase activity that could be restored by adding back calcium and magnesium ions. Mg(2+) stabilized a 1,000 kDa presenilin 1 complex through blue native gel electrophoresis and size-exclusion chromatography. Data suggest that Ca(2+) and Mg(2+) stabilize γ-secretase and enhance its activity.
  • Item
    No Preview Available
    Targeting Glycogen Synthase Kinase-3β for Therapeutic Benefit against Oxidative Stress in Alzheimer's Disease: Involvement of the Nrf2-ARE Pathway.
    Kanninen, K ; White, AR ; Koistinaho, J ; Malm, T (Hindawi Limited, 2011)
    Specific regions of the Alzheimer's disease (AD) brain are burdened with extracellular protein deposits, the accumulation of which is concomitant with a complex cascade of overlapping events. Many of these pathological processes produce oxidative stress. Under normal conditions, oxidative stress leads to the activation of defensive gene expression that promotes cell survival. At the forefront of defence is the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates a broad spectrum of protective genes. Glycogen synthase kinase-3β (GSK-3β) regulates Nrf2, thus making this kinase a potential target for therapeutic intervention aiming to boost the protective activation of Nrf2. This paper aims to review the neuroprotective role of Nrf2 in AD, with special emphasis on the role of GSK-3β in the regulation of the Nrf2 pathway. We also examine the potential of inducing GSK-3β by small-molecule activators, dithiocarbamates, which potentially exert their beneficial therapeutic effects via the activation of the Nrf2 pathway.
  • Item
    No Preview Available
    Membrane-targeted strategies for modulating APP and A beta-mediated toxicity
    Price, KA ; Crouch, PJ ; Donnelly, PS ; Masters, CL ; White, AR ; Curtain, CC (WILEY, 2009-02-01)
    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-beta (Abeta) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Abeta is formed is a membrane-bound protein, and Abeta production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Abeta/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD.
  • Item
    Thumbnail Image
    Increased metal content in the TDP-43(A315T) transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis
    Dang, TNT ; Lim, NKH ; Grubman, A ; Li, Q-X ; Volitakis, I ; White, AR ; Crouch, PJ (FRONTIERS MEDIA SA, 2014-02-11)
    Disrupted metal homeostasis is a consistent feature of neurodegenerative disease in humans and is recapitulated in mouse models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) and neuronal ceriod lipofuscinosis. While the definitive pathogenesis of neurodegenerative disease in humans remains to be fully elucidated, disease-like symptoms in the mouse models are all driven by the presence or over-expression of a putative pathogenic protein, indicating an in vivo relationship between expression of these proteins, disrupted metal homeostasis and the symptoms of neuronal failure. Recently it was established that mutant TAR DNA binding protein-43 (TDP-43) is associated with the development of frontotemporal lobar degeneration and ALS. Subsequent development of transgenic mice that express human TDP-43 carrying the disease-causing A315T mutation has provided new opportunity to study the underlying mechanisms of TDP-43-related neurodegenerative disease. We assessed the cognitive and locomotive phenotype of TDP-43 (A315T) mice and their wild-type littermates and also assessed bulk metal content of brain and spinal cord tissues. Metal levels in the brain were not affected by the expression of mutant TDP-43, but zinc, copper, and manganese levels were all increased in the spinal cords of TDP-43 (A315T) mice when compared to wild-type littermates. Performance of the TDP-43 (A315T) mice in the Y-maze test for cognitive function was not significantly different to wild-type mice. By contrast, performance of the TDP-43 (A315T) in the rotarod test for locomotive function was consistently worse than wild-type mice. These preliminary in vivo data are the first to show that expression of a disease-causing form of TDP-43 is sufficient to disrupt metal ion homeostasis in the central nervous system. Disrupted metal ion homeostasis in the spinal cord but not the brain may explain why the TDP-43 (A315T) mice show symptoms of locomotive decline and not cognitive decline.
  • Item
    Thumbnail Image
    Neuroinflammation and copper in Alzheimer's disease.
    Choo, XY ; Alukaidey, L ; White, AR ; Grubman, A (Hindawi Limited, 2013)
    Inflammation is the innate immune response to infection or tissue damage. Initiation of proinflammatory cascades in the central nervous system (CNS) occurs through recognition of danger associated molecular patterns by cognate immune receptors expressed on inflammatory cells and leads to rapid responses to remove the danger stimulus. The presence of activated microglia and astrocytes in the vicinity of amyloid plaques in the brains of Alzheimer's disease (AD) patients and mouse models implicates inflammation as a contributor to AD pathogenesis. Activated microglia play a critical role in amyloid clearance, but chronic deregulation of CNS inflammatory pathways results in secretion of neurotoxic mediators that ultimately contribute to neurodegeneration in AD. Copper (Cu) homeostasis is profoundly affected in AD, and accumulated extracellular Cu drives A β aggregation, while intracellular Cu deficiency limits bioavailable Cu required for CNS functions. This review presents an overview of inflammatory events that occur in AD in response to A β and highlights recent advances on the role of Cu in modulation of beneficial and detrimental inflammatory responses in AD.
  • Item
    Thumbnail Image
    Increased Zinc and Manganese in Parallel with Neurodegeneration, Synaptic Protein Changes and Activation of Akt/GSK3 Signaling in Ovine CLN6 Neuronal Ceroid Lipofuscinosis
    Kanninen, KM ; Grubman, A ; Meyerowitz, J ; Duncan, C ; Tan, J-L ; Parker, SJ ; Crouch, PJ ; Paterson, BM ; Hickey, JL ; Donnelly, PS ; Volitakis, I ; Tammen, I ; Palmer, DN ; White, AR ; Kahle, PJ (PUBLIC LIBRARY SCIENCE, 2013-03-14)
    Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.