Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Metals and Alzheimer's disease
    Adlard, PA ; Bush, AI (IOS PRESS, 2006-11-01)
    There is increasing evidence to support a role for both the amyloid beta-protein precursor (AbetaPP) and its proteolytic fragment, amyloid beta (Abeta), in metal ion homeostasis. Furthermore, metal ions such as zinc and copper can interact with both AbetaPP and Abeta to potentiate Alzheimer's disease by participating in the aggregation of these normal cellular proteins and in the generation of reactive oxygen species. In addition, metal ions may interact on several other AD-related pathways, including those involved in neurofibrillary tangle formation, secretase cleavage of AbetaPP and proteolytic degradation of Abeta. As such, a dysregulation of metal ion homeostasis, as occurs with both aging and in AD, may foster an environment that can both precipitate and accelerate degenerative conditions such as AD. This offers a broad biochemical front for novel therapeutic interventions.
  • Item
    No Preview Available
    Membrane-targeted strategies for modulating APP and A beta-mediated toxicity
    Price, KA ; Crouch, PJ ; Donnelly, PS ; Masters, CL ; White, AR ; Curtain, CC (WILEY, 2009-02-01)
    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-beta (Abeta) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Abeta is formed is a membrane-bound protein, and Abeta production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Abeta/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD.
  • Item
    Thumbnail Image
    Metal homeostasis in Alzheimer's disease
    White, AR ; Barnham, KJ ; Bush, AI (TAYLOR & FRANCIS LTD, 2006-05-01)
    2012 has been another year in which multiple large-scale clinical trials for Alzheimer's disease (AD) have failed to meet their clinical endpoints. With the social and financial burden of this disease increasing every year, the onus is now on the field of AD researchers to investigate alternative ideas to deliver outcomes for patients. Although several major clinical trials targeting Aβ have failed, three smaller clinical trials targeting metal interactions with Aβ have all shown benefit for patients. Here we review the genetic, pathological, biochemical, and pharmacological evidence that underlies the metal hypothesis of AD. The AD-affected brain suffers from metallostasis, or fatigue of metal trafficking, resulting in redistribution of metals into inappropriate compartments. The metal hypothesis is built upon a triad of transition elements: iron, copper, and zinc. The hypothesis has matured from early investigations showing amyloidogenic and oxidative stress consequences of these metals; recently, disease-related proteins, APP, tau, and presenilin, have been shown to have major roles in metal regulation, which provides insight into the pathway of neurodegeneration in AD and illuminates potential new therapeutic avenues.