Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    NITRITE IS PRODUCED BY ELICITED BUT NOT BY CIRCULATING NEUTROPHILS
    STEWART, AG ; DUSTING, GJ ; GIARRACCA, RG ; HARRIS, T ; LIM, Y ; SOBEY, CG (RAPID SCIENCE PUBLISHERS, 1993-10)
    The generation of nitrite (NO(2) (-)) was used as an index of the production of nitric oxide by human and rat polymorphonuclear leukocytes (PMN) and rat peritoneal macrophages. Human peripheral blood PMN did not produce significant levels of NO(2) (-). Attempts to induce NO(2) (-) generation in human PMN by incubation with GM-CSF (1 nM), TNFalpha (0.3 nM), endotoxin (1 mug/ml) or formyl-Met-Leu-Phe (100 nM) for up to 16 h were not successful. Addition of human PMN primed by GM-CSF (1 nM) to rabbit aortic ring preparations precontracted with phenylephrine had no effect on tone. In contrast to these observations, PMN, isolated from the peritoneum of oyster glycogen treated rats, generated NO(2) (-) via a pathway sensitive to inhibition by the nitric oxide synthase inhibitor, N(G)-monomethyl L-arginine. However, peripheral blood rat PMN obtained from the same animals did not produce NO(2) (-), even during prolonged incubation for periods of up to 16 h. It is suggested that detectable NO production by PMN requires NO synthase activity to be induced either by the process of PMN migration or by exposure to certain cytokines produced locally at the site of inflammation.
  • Item
    Thumbnail Image
    Plasminogen-stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin A2, involving plasmin-activated cell signalling
    Stewart, AG ; Xia, YC ; Harris, T ; Royce, S ; Hamilton, JA ; Schuliga, M (WILEY-BLACKWELL, 2013-12)
    BACKGROUND AND PURPOSE: The conversion of plasminogen into plasmin by interstitial urokinase plasminogen activator (uPA) is potentially important in asthma pathophysiology. In this study, the effect of uPA-mediated plasminogen activation on airway smooth muscle (ASM) cell proliferation was investigated. EXPERIMENTAL APPROACH: Human ASM cells were incubated with plasminogen (0.5-50 μg·mL(-1) ) or plasmin (0.5-50 mU·mL(-1) ) in the presence of pharmacological inhibitors, including UK122, an inhibitor of uPA. Proliferation was assessed by increases in cell number or MTT reduction after 48 h incubation with plasmin(ogen), and by earlier increases in [(3) H]-thymidine incorporation and cyclin D1 expression. KEY RESULTS: Plasminogen (5 μg·mL(-1) )-stimulated increases in cell proliferation were attenuated by UK122 (10 μM) or by transfection with uPA gene-specific siRNA. Exogenous plasmin (5 mU·mL(-1) ) also stimulated increases in cell proliferation. Inhibition of plasmin-stimulated ERK1/2 or PI3K/Akt signalling attenuated plasmin-stimulated increases in ASM proliferation. Furthermore, pharmacological inhibition of cell signalling mediated by the EGF receptor, a receptor trans-activated by plasmin, also reduced plasmin(ogen)-stimulated cell proliferation. Knock down of annexin A2, which has dual roles in both plasminogen activation and plasmin-signal transduction, also attenuated ASM cell proliferation following incubation with either plasminogen or plasmin. CONCLUSIONS AND IMPLICATIONS: Plasminogen stimulates ASM cell proliferation in a manner mediated by uPA and involving multiple signalling pathways downstream of plasmin. Targeting mediators of plasminogen-evoked ASM responses, such as uPA or annexin A2, may be useful in the treatment of asthma.
  • Item
    No Preview Available
    Plasminogen-Stimulated Inflammatory Cytokine Production by Airway Smooth Muscle Cells Is Regulated by Annexin A2
    Schuliga, M ; Langenbach, S ; Xia, YC ; Qin, C ; Mok, JSL ; Harris, T ; Mackay, GA ; Medcalf, RL ; Stewart, AG (AMER THORACIC SOC, 2013-11)
    Plasminogen has a role in airway inflammation. Airway smooth muscle (ASM) cells cleave plasminogen into plasmin, a protease with proinflammatory activity. In this study, the effect of plasminogen on cytokine production by human ASM cells was investigated in vitro. Levels of IL-6 and IL-8 in the medium of ASM cells were increased by incubation with plasminogen (5-50 μg/ml) for 24 hours (P < 0.05; n = 6-9), corresponding to changes in the levels of cytokine mRNA at 4 hours. The effects of plasminogen were attenuated by α2-antiplasmin (1 μg/ml), a plasmin inhibitor (P < 0.05; n = 6-12). Exogenous plasmin (5-15 mU/ml) also stimulated cytokine production (P < 0.05; n = 6-8) in a manner sensitive to serine-protease inhibition by aprotinin (10 KIU/ml). Plasminogen-stimulated cytokine production was increased in cells pretreated with basic fibroblast growth factor (300 pM) in a manner associated with increases in urokinase plasminogen activator expression and plasmin formation. The knockdown of annexin A2, a component of the putative plasminogen receptor comprised of annexin A2 and S100A10, attenuated plasminogen conversion into plasmin and plasmin-stimulated cytokine production by ASM cells. Moreover, a role for annexin A2 in airway inflammation was demonstrated in annexin A2-/- mice in which antigen-induced increases in inflammatory cell number and IL-6 levels in the bronchoalveolar lavage fluid were reduced (P < 0.01; n = 10-14). In conclusion, plasminogen stimulates ASM cytokine production in a manner regulated by annexin A2. Our study shows for the first time that targeting annexin A2-mediated signaling may provide a novel therapeutic approach to the treatment of airway inflammation in diseases such as chronic asthma.
  • Item
    No Preview Available
    Transforming Growth Factor-β-Induced Differentiation of Airway Smooth Muscle Cells Is Inhibited by Fibroblast Growth Factor-2
    Schuliga, M ; Javeed, A ; Harris, T ; Xia, Y ; Qin, C ; Wang, Z ; Zhang, X ; Lee, PVS ; Camoretti-Mercado, B ; Stewart, AG (AMER THORACIC SOC, 2013-03)
    In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor-β (TGF-β)-stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-β-stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction-dependent manner. The abundance of ordered α-smooth muscle actin (α-SMA) filaments formed in the presence of TGF-β were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-β-stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-β-stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml(-1)), exerted no effect on TGF-β-regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-β treatment, still reduced contractile protein expression, even when the TGF-β-receptor kinase inhibitor, SB431542 (10 μM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-β is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.
  • Item
    No Preview Available
    Transforming growth factor-β impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line
    Salem, S ; Harris, T ; Mok, JSL ; Li, MYS ; Keenan, CR ; Schuliga, MJ ; Stewart, AG (WILEY, 2012-08)
    BACKGROUND AND PURPOSE: The lung adenocarcinoma cell line, A549, undergoes epithelial-mesenchymal cell transition (EMT) in response to TGF-β. Glucocorticoids do not prevent the EMT response, but TGF-β induced resistance to the cytokine-regulatory action of glucocorticoids. We sought to characterize the impairment of glucocorticoid response in A549 cells. EXPERIMENTAL APPROACH: A549 cells were exposed to TGF-β for up to 96 h before glucocorticoid treatment and challenge with IL-1α to assess glucocorticoid regulation of IL-6 and CXCL8 production. Nuclear localization of the glucocorticoid receptor α (GRα) was ascertained by immunofluorescence and Western blotting. Transactivation of the glucocorticoid response element (GRE) was measured with a transfected GRE-secreted human placental alkaline phosphatase reporter. KEY RESULTS: TGF-β (40-400 pM) reduced the maximum inhibitory effect of dexamethasone on IL-1α-induced IL-6 and CXCL8 production. The impaired glucocorticoid response was detected with 4 h of TGF-β (40 pM) exposure (and 4 h IL-1α to induce CXCL8 expression) and therefore was not secondary to EMT, a process that requires longer incubation periods and higher concentrations of TGF-β. TGF-β also impaired dexamethasone regulation of granulocyte-macrophage colony-stimulating factor in thrombin-stimulated BEAS-2B epithelial cells. Impaired regulation of CXCL8 was associated with markedly reduced GRE transactivation and reduced induction of mRNA for IκBα, the glucocorticoid-inducible leucine zipper and the epithelial sodium channel (SCNN1A). The expression, cellular levels and nuclear localization of GRα were reduced by TGF-β. CONCLUSIONS AND IMPLICATIONS: We have identified mechanisms underlying the impairment of responses to glucocorticoids by TGF-β in the A549 and BEAS-2B cell lines.
  • Item
    Thumbnail Image
    Total synthesis of the endogenous inflammation resolving lipid resolvin D2 using a common lynchpin
    Li, J ; Leong, MM ; Stewart, A ; Rizzacasa, MA (BEILSTEIN-INSTITUT, 2013-12-03)
    The total synthesis of the endogenous inflammation resolving eicosanoid resolvin D2 (1) is described. The key steps involved a Wittig reaction between aldehyde 5 and the ylide derived from phosphonium salt 6 to give enyne 17 and condensation of the same ylide with aldehyde 7 to afford enyne 11. Desilylation of 11 followed by hydrozirconation and iodination gave the vinyl iodide 4 and Sonogashira coupling between this compound and enyne 3 provided alkyne 18. Acetonide deprotection, partial reduction and ester hydrolysis then gave resolvin D2 (1).