Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    LysoTracker is a marker of differentiated alveolar type II cells
    Van der Velden, JL ; Bertoncello, I ; McQualter, JL (BMC, 2013-11-11)
    BACKGROUND: LysoTracker Green DND-26 is a fluorescent dye that stains acidic compartments in live cells and has been shown to selectively accumulate in lamellar bodies in alveolar type II (AT2) cells in the lung. The aim of this study was to determine whether the accumulation of LysoTracker in lamellar bodies can be used to isolate viable AT2 cells by flow cytometry and track their differentiation in live-cell culture by microscopy. METHODS: Mouse lung cells were sorted on the basis of CD45(neg)CD31(neg)EpCAM(pos)LysoTracker(pos) expression and characterized by immunostaining for SP-C and cultured in a three-dimensional epithelial colony-forming unit (CFU-Epi) assay. To track AT2 cell differentiation, lung epithelial stem and progenitor cells were cultured in a CFU-Epi assay with LysoTracker-supplemented media. RESULTS: The purity of sorted AT2 cells as determined by SP-C staining was 97.4% and viability was 85.3%. LysoTracker(pos) AT2 cells generated SP-C(pos) alveolar epithelial cell colonies in culture, and when added to the CFU-Epi culture medium, LysoTracker marked the differentiation of stem/progenitor-derived AT2 cells. CONCLUSIONS: This study describes a novel method for isolating AT2 cells from mouse lungs. The high purity and viability of cells attained by this method, makes them suitable for functional analysis in vitro. The application of LysoTracker to live cell cultures will allow better assessment of the cellular and molecular mechanisms that regulate AT2 cell differentiation.
  • Item
    Thumbnail Image
    TGF-β signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in the adult lung
    McQualter, JL ; McCarty, RC ; Van der Velden, J ; O'Donoghu, RJJ ; Asselin-Labat, M-L ; Bozinovski, S ; Bertoncello, I (ELSEVIER SCIENCE BV, 2013-11)
    Tissue resident mesenchymal stromal cells (MSCs) contribute to tissue regeneration through various mechanisms, including the secretion of trophic factors that act directly on epithelial stem cells to promote epithelialization. However, MSCs in tissues constitute a heterogeneous population of stromal cells and different subtypes may have different functions. In this study we show that CD166(neg) and CD166(pos) lung stromal cells have different proliferative and differentiative potential. CD166(neg) lung stromal cells exhibit high proliferative potential with the capacity to differentiate along the lipofibroblastic and myofibroblastic lineages, whereas CD166(pos) lung stromal cells have limited proliferative potential and are committed to the myofibroblastic lineage. Moreover, we show that CD166(pos) lung stromal cells do not share the same epithelial-supportive capacity as their CD166(neg) counterparts, which support the growth of lung epithelial stem cell (EpiSPC) colonies in vitro. In addition, ex vivo expansion of lung stromal cells also resulted in the loss of epithelial-supportive capacity, which could be reinstated by inhibition of the TGF-β signaling pathway. We show that epithelial-supportive capacity correlated with the level of FGF-10 expression and the reactivation of several lung development-associated genes. In summary, these studies suggest that TGF-β signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in the adult lung.
  • Item
    Thumbnail Image
    Lung stem cells: Do they exist?
    Bertoncello, I ; McQualter, JL (WILEY, 2013-05)
    Recognition of the potential of stem cell-based therapies for alleviating intractable lung diseases has provided the impetus for research aimed at identifying regenerative cells in the adult lung, understanding how they are organized and regulated, and how they could be harnessed in lung regenerative medicine. In this review, we describe the attributes of adult stem and progenitor cells in adult organs and how they are regulated by the permissive or restrictive microenvironment in which they reside. We describe the power and limitations of experimental models, cell separative strategies and functional assays used to model the organization and regulation of adult airway and alveolar stem cells in the adult lung. The review summarizes recent progress and obstacles in defining endogenous lung epithelial stem and progenitor cells in mouse models and in translational studies.
  • Item
    No Preview Available
    Mesenchymal stromal cell turnover in the normal adult lung revisited
    Seyed-Razavi, Y ; Williams, B ; Winkler, DA ; Bertoncello, I (AMER PHYSIOLOGICAL SOC, 2013-11)
    We have employed a simple and robust noninvasive method of continuous in vivo long-term bromodeoxyuridine (BrdU) labeling to analyze lung mesenchymal stromal cell turnover in adult mice in the steady state. Mathematical modeling of BrdU uptake in flow cytometrically sorted CD45(neg)CD31(neg)Sca-1(pos) lung cells following long-term feeding of BrdU to mice in their drinking water reveals that lung mesenchymal stromal cells cycle continuously throughout life. Analysis of BrdU incorporation during long-term feeding and during chasing (delabeling) following replacement of BrdU-water with normal water shows that the CD45(neg)CD31(neg)Sca-1(pos) lung mesenchymal stromal cell compartment turns over at a rate of ∼2.26% per day with a time to half-cycled of 44 days, an estimated cell proliferation rate of 0.004/day, and a cell death rate of 0.018/day.