Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    Thumbnail Image
    Expression and Cellular Distribution of Ubiquitin in Response to Injury in the Developing Spinal Cord of Monodelphis domestica
    Noor, NM ; Mollgard, K ; Wheaton, BJ ; Steer, DL ; Truettner, JS ; Dziegielewska, KM ; Dietrich, WD ; Smith, AI ; Saunders, NR ; Di Giovanni, S (PUBLIC LIBRARY SCIENCE, 2013-04-23)
    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to postnatal day P35 in control opossums (Monodelphis domestica) and in response to complete spinal transection (T10) at P7, when axonal growth through site of injury occurs, and P28 when this is no longer possible. Cords were collected 1 or 7 days after injury, with age-matched controls and segments rostral to lesion were studied. Following spinal injury ubiquitin levels (western blotting) appeared reduced compared to controls especially one day after injury at P28. In contrast, after injury mRNA expression (qRT-PCR) was slightly increased at P7 but decreased at P28. Changes in isoelectric point of separated ubiquitin indicated possible post-translational modifications. Cellular distribution demonstrated a developmental shift between earliest (P8) and latest (P35) ages examined, from a predominantly cytoplasmic immunoreactivity to a nuclear expression; staining level and shift to nuclear staining was more pronounced following injury, except 7 days after transection at P28. After injury at P7 immunostaining increased in neurons and additionally in oligodendrocytes at P28. Mass spectrometry showed two ubiquitin bands; the heavier was identified as a fusion product, likely to be an ubiquitin precursor. Apparent changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets.
  • Item
    Thumbnail Image
    Pathological Changes in the White Matter after Spinal Contusion Injury in the Rat
    Ek, CJ ; Habgood, MD ; Dennis, R ; Dziegielewska, KM ; Mallard, C ; Wheaton, B ; Saunders, NR ; Combs, C (PUBLIC LIBRARY SCIENCE, 2012-08-29)
    It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.
  • Item
    Thumbnail Image
    Spontaneous Development of Full Weight-Supported Stepping after Complete Spinal Cord Transection in the Neonatal Opossum, Monodelphis domestica
    Wheaton, BJ ; Callaway, JK ; Ek, CJ ; Dziegielewska, KM ; Saunders, NR ; Fenton, B (PUBLIC LIBRARY SCIENCE, 2011-11-02)
    Spinal cord trauma in the adult nervous system usually results in permanent loss of function below the injury level. The immature spinal cord has greater capacity for repair and can develop considerable functionality by adulthood. This study used the marsupial laboratory opossum Monodelphis domestica, which is born at a very early stage of neural development. Complete spinal cord transection was made in the lower-thoracic region of pups at postnatal-day 7 (P7) or P28, and the animals grew to adulthood. Injury at P7 resulted in a dense neuronal tissue bridge that connected the two ends of the cord; retrograde neuronal labelling indicated that supraspinal and propriospinal innervation spanned the injury site. This repair was associated with pronounced behavioural recovery, coordinated gait and an ability to use hindlimbs when swimming. Injury at P28 resulted in a cyst-like cavity encased in scar tissue forming at the injury site. Using retrograde labelling, no labelled brainstem or propriospinal neurons were found above the lesion, indicating that detectable neuronal connectivity had not spanned the injury site. However, these animals could use their hindlimbs to take weight-supporting steps but could not use their hindlimbs when swimming. White matter, demonstrated by Luxol Fast Blue staining, was present in the injury site of P7- but not P28-injured animals. Overall, these studies demonstrated that provided spinal injury occurs early in development, regrowth of supraspinal innervation is possible. This repair appears to lead to improved functional outcomes. At older ages, even without detectable axonal growth spanning the injury site, substantial development of locomotion was still possible. This outcome is discussed in conjunction with preliminary findings of differences in the local propriospinal circuits following spinal cord injury (demonstrated with fluororuby labelling), which may underlie the weight bearing locomotion observed in the apparent absence of axons bridging the lesion site in P28-injured Monodelphis.
  • Item
    Thumbnail Image
    Age-Dependent Changes in the Proteome Following Complete Spinal Cord Transection in a Postnatal South American Opossum (Monodelphis domestica)
    Noor, NM ; Steer, DL ; Wheaton, BJ ; Ek, CJ ; Truettner, JS ; Dietrich, WD ; Dziegielewska, KM ; Richardson, SJ ; Smith, AI ; VandeBerg, JL ; Saunders, NR ; Fenton, B (PUBLIC LIBRARY SCIENCE, 2011-11-16)
    Recovery from severe spinal injury in adults is limited, compared to immature animals who demonstrate some capacity for repair. Using laboratory opossums (Monodelphis domestica), the aim was to compare proteomic responses to injury at two ages: one when there is axonal growth across the lesion and substantial behavioural recovery and one when no axonal growth occurs. Anaesthetized pups at postnatal day (P) 7 or P28 were subjected to complete transection of the spinal cord at thoracic level T10. Cords were collected 1 or 7 days after injury and from age-matched controls. Proteins were separated based on isoelectric point and subunit molecular weight; those whose expression levels changed following injury were identified by densitometry and analysed by mass spectrometry. Fifty-six unique proteins were identified as differentially regulated in response to spinal transection at both ages combined. More than 50% were cytoplasmic and 70% belonged to families of proteins with characteristic binding properties. Proteins were assigned to groups by biological function including regulation (40%), metabolism (26%), inflammation (19%) and structure (15%). More changes were detected at one than seven days after injury at both ages. Seven identified proteins: 14-3-3 epsilon, 14-3-3 gamma, cofilin, alpha enolase, heart fatty acid binding protein (FABP3), brain fatty acid binding protein (FABP7) and ubiquitin demonstrated age-related differential expression and were analysed by qRT-PCR. Changes in mRNA levels for FABP3 at P7+1day and ubiquitin at P28+1day were statistically significant. Immunocytochemical staining showed differences in ubiquitin localization in younger compared to older cords and an increase in oligodendrocyte and neuroglia immunostaining following injury at P28. Western blot analysis supported proteomic results for ubiquitin and 14-3-3 proteins. Data obtained at the two ages demonstrated changes in response to injury, compared to controls, that were different for different functional protein classes. Some may provide targets for novel drug or gene therapies.
  • Item
    Thumbnail Image
    Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse
    Stolp, HB ; Turnquist, C ; Dziegielewska, KM ; Saunders, NR ; Anthony, DC ; Molnar, Z (OXFORD UNIV PRESS, 2011-11)
    It has been well established that maternal inflammation during pregnancy alters neurological function in the offspring, but its impact on cortical development and long-term consequences on the cytoarchitecture is largely unstudied. Here we report that lipopolysaccharide-induced systemic maternal inflammation in C57Bl/6 mice at embryonic Day 13.5 of pregnancy, as early as 8 h after challenge, caused a significant reduction in cell proliferation in the ventricular zone of the developing cerebral cortex, as revealed by quantification of anti-phospho-Histone H3 immunoreactivity and bromodeoxyuridine pulse labelling. The angle of mitotic cleavage, determined from analysis of haematoxylin and eosin staining, cyclin E1 gene expression and the pattern of β-catenin immunoreactivity were also altered by the challenge, which suggests a change from symmetric to asymmetric division in the radial progenitor cells. Modifications of cortical lamination and gene expression patterns were detected at post-natal Day 8 suggesting prolonged consequences of these alterations during embryonic development. Cellular uptake of proteins from the cerebrospinal fluid was observed in brains from lipopolysaccharide-treated animals in radial progenitor cells. However, the foetal blood-brain barrier to plasma proteins remained intact. Together, these results indicate that maternal inflammation can disrupt the ventricular surface and lead to decreased cellular proliferation. Changes in cell density in Layers IV and V at post-natal Day 8 show that these initial changes have prolonged effects on cortical organization. The possible shift in the fate of progeny and the resulting alterations in the relative cell numbers in the cerebral cortex following a maternal inflammatory response shown here will require further investigation to determine the long-term consequences of inflammation on the development of neuronal circuitry and behaviour.
  • Item
    Thumbnail Image
    Effects of neonatal systemic inflammation on blood-brain barrier permeability and behaviour in juvenile and adult rats.
    Stolp, HB ; Johansson, PA ; Habgood, MD ; Dziegielewska, KM ; Saunders, NR ; Ek, CJ (Hindawi Limited, 2011)
    Several neurological disorders have been linked to inflammatory insults suffered during development. We investigated the effects of neonatal systemic inflammation, induced by LPS injections, on blood-brain barrier permeability, endothelial tight junctions and behaviour of juvenile (P20) and adult rats. LPS-treatment resulted in altered cellular localisation of claudin-5 and changes in ultrastructural morphology of a few cerebral blood vessels. Barrier permeability to sucrose was significantly increased in LPS treated animals when adult but not at P20 or earlier. Behavioural tests showed that LPS treated animals at P20 exhibited altered behaviour using prepulse inhibition (PPI) analysis, whereas adults demonstrated altered behaviour in the dark/light test. These data indicate that an inflammatory insult during brain development can change blood-brain barrier permeability and behaviour in later life. It also suggests that the impact of inflammation can occur in several phases (short- and long-term) and that each phase might lead to different behavioural modifications.
  • Item
    Thumbnail Image
    Spatio-Temporal Progression of Grey and White Matter Damage Following Contusion Injury in Rat Spinal Cord
    Ek, CJ ; Habgood, MD ; Callaway, JK ; Dennis, R ; Dziegielewska, KM ; Johansson, PA ; Potter, A ; Wheaton, B ; Saunders, NR ; Combs, C (PUBLIC LIBRARY SCIENCE, 2010-08-09)
    Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait analysis). We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min) lesion volumes showed very low variance (1.92+/-0.23 mm3, mean+/-SD, n=5). Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.
  • Item
    Thumbnail Image
    Weight-Bearing Locomotion in the Developing Opossum, Monodelphis domestica following Spinal Transection: Remodeling of Neuronal Circuits Caudal to Lesion
    Wheaton, BJ ; Noor, NM ; Whish, SC ; Truettner, JS ; Dietrich, WD ; Zhang, M ; Crack, PJ ; Dziegielewska, KM ; Saunders, NR ; Burgess, HA (PUBLIC LIBRARY SCIENCE, 2013-08-12)
    Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although following injury the isolated segment of the spinal cord retains some capability of rhythmic movement the mechanisms involved in weight-bearing locomotion are distinct.
  • Item
    Thumbnail Image
    Gene expression profiling of postnatal lung development in the marsupial gray short-tailed opossum (Monodelphis domestica) highlights conserved developmental pathways and specific characteristics during lung organogenesis
    Modepalli, V ; Kumar, A ; Sharp, JA ; Saunders, NR ; Nicholas, KR ; Lefevre, C (BMC, 2018-10-05)
    BACKGROUND: After a short gestation, marsupials give birth to immature neonates with lungs that are not fully developed and in early life the neonate partially relies on gas exchange through the skin. Therefore, significant lung development occurs after birth in marsupials in contrast to eutherian mammals such as humans and mice where lung development occurs predominantly in the embryo. To explore the mechanisms of marsupial lung development in comparison to eutherians, morphological and gene expression analysis were conducted in the gray short-tailed opossum (Monodelphis domestica). RESULTS: Postnatal lung development of Monodelphis involves three key stages of development: (i) transition from late canalicular to early saccular stages, (ii) saccular and (iii) alveolar stages, similar to developmental stages overlapping the embryonic and perinatal period in eutherians. Differentially expressed genes were identified and correlated with developmental stages. Functional categories included growth factors, extracellular matrix protein (ECMs), transcriptional factors and signalling pathways related to branching morphogenesis, alveologenesis and vascularisation. Comparison with published data on mice highlighted the conserved importance of extracellular matrix remodelling and signalling pathways such as Wnt, Notch, IGF, TGFβ, retinoic acid and angiopoietin. The comparison also revealed changes in the mammalian gene expression program associated with the initiation of alveologenesis and birth, pointing to subtle differences between the non-functional embryonic lung of the eutherian mouse and the partially functional developing lung of the marsupial Monodelphis neonates. The data also highlighted a subset of contractile proteins specifically expressed in Monodelphis during and after alveologenesis. CONCLUSION: The results provide insights into marsupial lung development and support the potential of the marsupial model of postnatal development towards better understanding of the evolution of the mammalian bronchioalveolar lung.
  • Item
    Thumbnail Image
    Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain
    Saunders, NR ; Dziegielewska, KM ; Mollgard, K ; Habgood, MD (WILEY, 2018-12)
    Properties of the local internal environment of the adult brain are tightly controlled providing a stable milieu essential for its normal function. The mechanisms involved in this complex control are structural, molecular and physiological (influx and efflux transporters) frequently referred to as the 'blood-brain barrier'. These mechanisms include regulation of ion levels in brain interstitial fluid essential for normal neuronal function, supply of nutrients, removal of metabolic products, and prevention of entry or elimination of toxic agents. A key feature is cerebrospinal fluid secretion and turnover. This is much less during development, allowing greater accumulation of permeating molecules. The overall effect of these mechanisms is to tightly control the exchange of molecules into and out of the brain. This review presents experimental evidence currently available on the status of these mechanisms in developing brain. It has been frequently stated for over nearly a century that the blood-brain barrier is not present or at least is functionally deficient in the embryo, fetus and newborn. We suggest the alternative hypothesis that the barrier mechanisms in developing brain are likely to be appropriately matched to each stage of its development. The contributions of different barrier mechanisms, such as changes in constituents of cerebrospinal fluid in relation to specific features of brain development, for example neurogenesis, are only beginning to be studied. The evidence on this previously neglected aspect of brain barrier function is outlined. We also suggest future directions this field could follow with special emphasis on potential applications in a clinical setting.