Pharmacology and Therapeutics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Synthesis and structure-activity relationships of teixobactin
    Karas, JA ; Chen, F ; Schneider-Futschik, EK ; Kang, Z ; Hussein, M ; Swarbrick, J ; Hoyer, D ; Giltrap, AM ; Payne, RJ ; Li, J ; Velkov, T (WILEY, 2020-01)
    The discovery of antibiotics has led to the effective treatment of bacterial infections that were otherwise fatal and has had a transformative effect on modern medicine. Teixobactin is an unusual depsipeptide natural product that was recently discovered from a previously unculturable soil bacterium and found to possess potent antibacterial activity against several Gram positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. One of the key features of teixobactin as an antibiotic lead is that resistance could not be generated in a laboratory setting. This is proposed to be a result of a mechanism of action that involves binding to essential cell wall synthesis building blocks, lipid II and lipid III. Since the initial isolation report in 2015, significant efforts have been made to understand its unique mechanism of action, develop efficient synthetic routes for its production, and thus enable the generation of analogues for structure-activity relationship studies and optimization of its pharmacological properties. Our review provides a comprehensive treatise on the progress in understanding teixobactin chemistry, structure-activity relationships, and mechanisms of antibacterial activity. Teixobactin represents an exciting starting point for the development of new antibiotics that can be used to combat multidrug-resistant bacterial ("superbug") infections.
  • Item
    Thumbnail Image
    The impact of backbone N-methylation on the structure-activity relationship of Leu10-teixobactin
    Velkov, T ; Swarbrick, JD ; Hussein, MH ; Schneider-Futschik, EK ; Hoyer, D ; Li, J ; Karas, JA (WILEY, 2019-09)
    Antimicrobial resistance is a serious threat to global human health; therefore, new anti-infective therapeutics are required. The cyclic depsi-peptide teixobactin exhibits potent antimicrobial activity against several Gram-positive pathogens. To study the natural product's mechanism of action and improve its pharmacological properties, efficient chemical methods for preparing teixobactin analogues are required to expedite structure-activity relationship studies. Described herein is a synthetic route that enables rapid access to analogues. Furthermore, our new N-methylated analogues highlight that hydrogen bonding along the N-terminal tail is likely to be important for antimicrobial activity.
  • Item
    Thumbnail Image
    The Killing Mechanism of Teixobactin against Methicillin-Resistant Staphylococcus aureus: an Untargeted Metabolomics Study
    Hussein, M ; Karas, JA ; Schneider-Futschik, EK ; Chen, F ; Swarbrick, J ; Paulin, OKA ; Hoyer, D ; Baker, M ; Zhu, Y ; Li, J ; Velkov, T ; Lloyd, KG (American Society for Microbiology, 2020)
    Antibiotics have served humankind through their use in modern medicine as effective treatments for otherwise fatal bacterial infections. Teixobactin is a first member of newly discovered natural antibiotics that was recently identified from a hitherto-unculturable soil bacterium, Eleftheria terrae, and recognized as a potent antibacterial agent against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. The most distinctive characteristic of teixobactin as an effective antibiotic is that teixobactin resistance could not be evolved in a laboratory setting. It is purported that teixobactin’s “resistance-resistant” mechanism of action includes binding to the essential bacterial cell wall synthesis building blocks lipid II and lipid III. In the present study, metabolomics was used to investigate the potential metabolic pathways involved in the mechanisms of antibacterial activity of the synthetic teixobactin analogue Leu10-teixobactin against a MRSA strain, S. aureus ATCC 700699. The metabolomes of S. aureus ATCC 700699 cells 1, 3, and 6 h following treatment with Leu10-teixobactin (0.5 μg/ml, i.e., 0.5× MIC) were compared to those of the untreated controls. Leu10-teixobactin significantly perturbed bacterial membrane lipids (glycerophospholipids and fatty acids), peptidoglycan (lipid I and II) metabolism, and cell wall teichoic acid (lipid III) biosynthesis as early as after 1 h of treatment, reflecting an initial activity on the cell envelope. Concordant with its time-dependent antibacterial killing action, Leu10-teixobactin caused more perturbations in the levels of key intermediates in pathways of amino-sugar and nucleotide-sugar metabolism and their downstream peptidoglycan and teichoic acid biosynthesis at 3 and 6 h. Significant perturbations in arginine metabolism and the interrelated tricarboxylic acid cycle, histidine metabolism, pantothenate, and coenzyme A biosynthesis were also observed at 3 and 6 h. To conclude, this is the first study to provide novel metabolomics mechanistic information, which lends support to the development of teixobactin as an antibacterial drug for the treatment of multidrug-resistant Gram-positive infections
  • Item
    Thumbnail Image
    Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa
    Hussein, M ; Han, M-L ; Zhu, Y ; Schneider-Futschik, EK ; Hu, X ; Zhou, QT ; Lin, Y-W ; Anderson, D ; Creek, DJ ; Hoyer, D ; Li, J ; Velkov, T (ELSEVIER SCIENCE BV, 2018)
    Polymyxins are amongst the most important antibiotics in modern medicine, in recent times their clinical utility has been overshadowed by nosocomial outbreaks of polymyxin resistant MDR Gram-negative 'superbugs'. An effective strategy to surmount polymyxin resistance is combination therapy with FDA-approved non-antibiotic drugs. Herein we used untargeted metabolomics to investigate the mechanism(s) of synergy between polymyxin B and the selective estrogen receptor modulator (SERM) tamoxifen against a polymyxin-resistant MDR cystic fibrosis (CF) Pseudomonas aeruginosa FADDI-PA006 isolate (polymyxin B MIC=8 mg/L , it is an MDR polymyxin resistant P. aeruginosa isolated from the lungs of a CF patient). The metabolome of FADDI-PA006 was profiled at 15 min, 1 and 4 h following treatment with polymyxin B (2 mg/L), tamoxifen (8 mg/L) either as monotherapy or in combination. At 15 min, the combination treatment induced a marked decrease in lipids, primarily fatty acid and glycerophospholipid metabolites that are involved in the biosynthesis of bacterial membranes. In line with the polymyxin-resistant status of this strain, at 1 h, both polymyxin B and tamoxifen monotherapies produced little effect on bacterial metabolism. In contrast to the combination which induced extensive reduction (≥ 1.0-log2-fold, p ≤ 0.05; FDR ≤ 0.05) in the levels of essential intermediates involved in cell envelope biosynthesis. Overall, these novel findings demonstrate that the primary mechanisms underlying the synergistic bactericidal effect of the combination against the polymyxin-resistant P. aeruginosa CF isolate FADDI-PA006 involves a disruption of the cell envelope biogenesis and an inhibition of aminoarabinose LPS modifications that confer polymyxin resistance.