Centre for Neuroscience - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Gas6 Increases Myelination by Oligodendrocytes and Its Deficiency Delays Recovery following Cuprizone-Induced Demyelination
    Binder, MD ; Xiao, J ; Kemper, D ; Ma, GZM ; Murray, SS ; Kilpatrick, TJ ; Guillemin, G (PUBLIC LIBRARY SCIENCE, 2011-03-10)
    Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system. Current research has shown that at least in some cases, the primary insult in MS could be directed at the oligodendrocyte, and that the earliest immune responses are primarily via innate immune cells. We have identified a family of receptor protein tyrosine kinases, known as the TAM receptors (Tyro3, Axl and Mertk), as potentially important in regulating both the oligodendrocyte and immune responses. We have previously shown that Gas6, a ligand for the TAM receptors, can affect the severity of demyelination in mice, with a loss of signalling via Gas6 leading to decreased oligodendrocyte survival and increased microglial activation during cuprizone-induced demyelination. We hypothesised TAM receptor signalling would also influence the extent of recovery in mice following demyelination. A significant effect of the absence of Gas6 was detected upon remyelination, with a lower level of myelination after 4 weeks of recovery in comparison with wild-type mice. The delay in remyelination was accompanied by a reduction in oligodendrocyte numbers. To understand the molecular mechanisms that drive the observed effects, we also examined the effect of exogenous Gas6 in in vitro myelination assays. We found that Gas6 significantly increased myelination in a dose-dependent manner, suggesting that TAM receptor signalling could be directly involved in myelination by oligodendrocytes. The reduced rate of remyelination in the absence of Gas6 could thus result from a lack of Gas6 at a critical time during myelin production after injury. These findings establish Gas6 as an important regulator of both CNS demyelination and remyelination.
  • Item
    Thumbnail Image
    Optic Nerve Diffusion Tensor Imaging after Acute Optic Neuritis Predicts Axonal and Visual Outcomes
    van der Walt, A ; Kolbe, SC ; Wang, YE ; Klistorner, A ; Shuey, N ; Ahmadi, G ; Paine, M ; Marriott, M ; Mitchell, P ; Egan, GF ; Butzkueven, H ; Kilpatrick, TJ ; Villoslada, P (PUBLIC LIBRARY SCIENCE, 2013-12-26)
    BACKGROUND: Early markers of axonal and clinical outcomes are required for early phase testing of putative neuroprotective therapies for multiple sclerosis (MS). OBJECTIVES: To assess whether early measurement of diffusion tensor imaging (DTI) parameters (axial and radial diffusivity) within the optic nerve during and after acute demyelinating optic neuritis (ON) could predict axonal (retinal nerve fibre layer thinning and multi-focal visual evoked potential amplitude reduction) or clinical (visual acuity and visual field loss) outcomes at 6 or 12 months. METHODS: Thirty-seven patients presenting with acute, unilateral ON were studied at baseline, one, three, six and 12 months using optic nerve DTI, clinical and paraclinical markers of axonal injury and clinical visual dysfunction. RESULTS: Affected nerve axial diffusivity (AD) was reduced at baseline, 1 and 3 months. Reduced 1-month AD correlated with retinal nerve fibre layer (RNFL) thinning at 6 (R=0.38, p=0.04) and 12 months (R=0.437, p=0.008) and VEP amplitude loss at 6 (R=0.414, p=0.019) and 12 months (R=0.484, p=0.003). AD reduction at three months correlated with high contrast visual acuity at 6 (ρ = -0.519, p = 0.001) and 12 months (ρ = -0.414, p=0.011). The time-course for AD reduction for each patient was modelled using a quadratic regression. AD normalised after a median of 18 weeks and longer normalisation times were associated with more pronounced RNFL thinning and mfVEP amplitude loss at 12 months. Affected nerve radial diffusivity (RD) was unchanged until three months, after which time it remained elevated. CONCLUSIONS: These results demonstrate that AD reduces during acute ON. One month AD reduction correlates with the extent of axonal loss and persistent AD reduction at 3 months predicts poorer visual outcomes. This suggests that acute ON therapies that normalise optic nerve AD by 3 months could also promote axon survival and improve visual outcomes.
  • Item
    Thumbnail Image
    Blocking LINGO-1 in vivo reduces degeneration and enhances regeneration of the optic nerve.
    Gresle, MM ; Liu, Y ; Kilpatrick, TJ ; Kemper, D ; Wu, Q-Z ; Hu, B ; Fu, Q-L ; So, K-F ; Sheng, G ; Huang, G ; Pepinsky, B ; Butzkueven, H ; Mi, S (SAGE Publications, 2016)
    BACKGROUND: Two ongoing phase II clinical trials (RENEW and SYNERGY) have been developed to test the efficacy of anti-LINGO-1 antibodies in acute optic neuritis and relapsing forms of multiple sclerosis, respectively. Across a range of experimental models, LINGO-1 has been found to inhibit neuron and oligodendrocyte survival, axon regeneration, and (re)myelination. The therapeutic effects of anti-LINGO-1 antibodies on optic nerve axonal loss and regeneration have not yet been investigated. OBJECTIVE: In this series of studies we investigate if LINGO-1 antibodies can prevent acute inflammatory axonal loss, and promote axonal regeneration after injury in rodent optic nerves. METHODS: The effects of anti-LINGO-1 antibody on optic nerve axonal damage were assessed using rodent myelin oligodendrocyte glycoprotein experimental autoimmune encephalomyelitis (EAE), and its effects on axonal regeneration were assessed in optic nerve crush injury models. RESULTS: In the optic nerve, anti-LINGO-1 antibody therapy was associated with improved optic nerve parallel diffusivity measures on MRI in mice with EAE and reduced axonal loss in rat EAE. Both anti-LINGO-1 antibody therapy and the genetic deletion of LINGO-1 reduced nerve crush-induced axonal degeneration and enhanced axonal regeneration. CONCLUSION: These data demonstrate that LINGO-1 blockade is associated with axonal protection and regeneration in the injured optic nerve.
  • Item
    Thumbnail Image
    Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission
    Arthur, AT ; Armati, PJ ; Bye, C ; Heard, RNS ; Stewart, GJ ; Pollard, JD ; Booth, DR (BMC, 2008-03-19)
    BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Although the pathogenesis of MS remains unknown, it is widely regarded as an autoimmune disease mediated by T-lymphocytes directed against myelin proteins and/or other oligodendrocyte epitopes. METHODS: In this study we investigated the gene expression profiles of peripheral blood cells from patients with RRMS during the relapse and the remission phases utilizing gene microarray technology. Dysregulated genes encoded in regions associated with MS susceptibility from genomic screens or previous transcriptomic studies were identified. The proximal promoter region polymorphisms of two genes were tested for association with disease and expression level. RESULTS: Distinct sets of dysregulated genes during the relapse and remission phases were identified including genes involved in apoptosis and inflammation. Three of these dysregulated genes have been previously implicated with MS susceptibility in genomic screens: TGFbeta1, CD58 and DBC1. TGFbeta1 has one common SNP in the proximal promoter: -508 T>C (rs1800469). Genotyping two Australian trio sets (total 620 families) found a trend for over-transmission of the T allele in MS in females (p < 0.13). Upregulation of CD58 and DBC1 in remission is consistent with their putative roles in promoting regulatory T cells and reducing cell proliferation, respectively. A fourth gene, ALOX5, is consistently found over-expressed in MS. Two common genetic variants were confirmed in the ALOX5 putative promoter: -557 T>C (rs12762303) and a 6 bp tandem repeat polymorphism (GGGCGG) between position -147 and -176; but no evidence for transmission distortion found. CONCLUSION: The dysregulation of these genes tags their metabolic pathways for further investigation for potential therapeutic intervention.
  • Item
    Thumbnail Image
    Optic Nerve Magnetisation Transfer Ratio after Acute Optic Neuritis Predicts Axonal and Visual Outcomes
    Wang, Y ; van der Walt, A ; Paine, M ; Klistorner, A ; Butzkueven, H ; Egan, GF ; Kilpatrick, TJ ; Kolbe, SC ; Villoslada, P (PUBLIC LIBRARY SCIENCE, 2012-12-18)
    Magnetisation transfer ratio (MTR) can reveal the degree of proton exchange between free water and macromolecules and was suggested to be pathological informative. We aimed to investigate changes in optic nerve MTR over 12 months following acute optic neuritis (ON) and to determine whether MTR measurements can predict clinical and paraclinical outcomes at 6 and 12 months. Thirty-seven patients with acute ON were studied within 2 weeks of presentation and at 1, 3, 6 and 12 months. Assessments included optic nerve MTR, retinal nerve fibre layer (RNFL) thickness, multifocal visual evoked potential (mfVEP) amplitude and latency and high (100%) and low (2.5%) contrast letter acuity. Eleven healthy controls were scanned twice four weeks apart for comparison with patients. Patient unaffected optic nerve MTR did not significantly differ from controls at any time-point. Compared to the unaffected nerve, affected optic nerve MTR was significantly reduced at 3 months (mean percentage interocular difference = -9.24%, p = 0.01), 6 months (mean = -12.48%, p<0.0001) and 12 months (mean = -7.61%, p = 0.003). Greater reduction in MTR at 3 months in patients was associated with subsequent loss of high contrast letter acuity at 6 (ρ = 0.60, p = 0.0003) and 12 (ρ = 0.44, p = 0.009) months, low contrast letter acuity at 6 (ρ = 0.35, p = 0.047) months, and RNFL thinning at 12 (ρ = 0.35, p = 0.044) months. Stratification of individual patient MTR time courses based on flux over 12 months (stable, putative remyelination and putative degeneration) predicted RNFL thinning at 12 months (F(2,32) = 3.59, p = 0.02). In conclusion, these findings indicate that MTR flux after acute ON is predictive of axonal degeneration and visual disability outcomes.
  • Item
    Thumbnail Image
    Parallel Changes in Structural and Functional Measures of Optic Nerve Myelination after Optic Neuritis
    van der Walt, A ; Kolbe, S ; Mitchell, P ; Wang, Y ; Butzkueven, H ; Egan, G ; Yiannikas, C ; Graham, S ; Kilpatrick, T ; Klistorner, A ; Frishman, L (PUBLIC LIBRARY SCIENCE, 2015-05-28)
    INTRODUCTION: Visual evoked potential (VEP) latency prolongation and optic nerve lesion length after acute optic neuritis (ON) corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP) latency and optic nerve lesion length after acute ON. METHODS: Thirty acute ON patients were studied at 1, 3, 6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7%) patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further. RESULTS: Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001) and 12 months (r = 0.75, p < 0.001). Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76 ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94 ms of latency delay. CONCLUSION: A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination.
  • Item
    Thumbnail Image
    Variants of ST8SIA1 Are Associated with Risk of Developing Multiple Sclerosis
    Husain, S ; Yildirim-Toruner, C ; Rubio, JP ; Field, J ; Schwalb, M ; Cook, S ; Devoto, M ; Vitale, E ; Reitsma, PH (PUBLIC LIBRARY SCIENCE, 2008-07-09)
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system of unknown etiology with both genetic and environmental factors playing a role in susceptibility. To date, the HLA DR15/DQ6 haplotype within the major histocompatibility complex on chromosome 6p, is the strongest genetic risk factor associated with MS susceptibility. Additional alleles of IL7 and IL2 have been identified as risk factors for MS with small effect. Here we present two independent studies supporting an allelic association of MS with polymorphisms in the ST8SIA1 gene, located on chromosome 12p12 and encoding ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1. The initial association was made in a single three-generation family where a single-nucleotide polymorphism (SNP) rs4762896, was segregating together with HLA DR15/DQ6 in MS patients. A study of 274 family trios (affected child and both unaffected parents) from Australia validated the association of ST8SIA1 in individuals with MS, showing transmission disequilibrium of the paternal alleles for three additional SNPs, namely rs704219, rs2041906, and rs1558793, with p = 0.001, p = 0.01 and p = 0.01 respectively. These findings implicate ST8SIA1 as a possible novel susceptibility gene for MS.
  • Item
    Thumbnail Image
    Comparing genotyping algorithms for Illumina's Infinium whole-genome SNP BeadChips
    Ritchie, ME ; Liu, R ; Carvalho, BS ; Irizarry, RA (BMC, 2011-03-08)
    BACKGROUND: Illumina's Infinium SNP BeadChips are extensively used in both small and large-scale genetic studies. A fundamental step in any analysis is the processing of raw allele A and allele B intensities from each SNP into genotype calls (AA, AB, BB). Various algorithms which make use of different statistical models are available for this task. We compare four methods (GenCall, Illuminus, GenoSNP and CRLMM) on data where the true genotypes are known in advance and data from a recently published genome-wide association study. RESULTS: In general, differences in accuracy are relatively small between the methods evaluated, although CRLMM and GenoSNP were found to consistently outperform GenCall. The performance of Illuminus is heavily dependent on sample size, with lower no call rates and improved accuracy as the number of samples available increases. For X chromosome SNPs, methods with sex-dependent models (Illuminus, CRLMM) perform better than methods which ignore gender information (GenCall, GenoSNP). We observe that CRLMM and GenoSNP are more accurate at calling SNPs with low minor allele frequency than GenCall or Illuminus. The sample quality metrics from each of the four methods were found to have a high level of agreement at flagging samples with unusual signal characteristics. CONCLUSIONS: CRLMM, GenoSNP and GenCall can be applied with confidence in studies of any size, as their performance was shown to be invariant to the number of samples available. Illuminus on the other hand requires a larger number of samples to achieve comparable levels of accuracy and its use in smaller studies (50 or fewer individuals) is not recommended.
  • Item
    Thumbnail Image
    Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20
    Bahlo, M ; Booth, DR ; Broadley, SA ; Brown, MA ; Foote, SJ ; Griffiths, LR ; Kilpatrick, TJ ; Lechner-Scott, J ; Moscato, P ; Perreau, VM ; Rubio, JP ; Scott, RJ ; Stankovich, J ; Stewart, GJ ; Taylor, BV ; Wiley, J ; Clarke, G ; Cox, MB ; Csurhes, PA ; Danoy, P ; Drysdale, K ; Field, J ; Foote, SJ ; Greer, JM ; Guru, P ; Hadler, J ; McMorran, BJ ; Jensen, CJ ; Johnson, LJ ; McCallum, R ; Merriman, M ; Merriman, T ; Pryce, K ; Tajouri, L ; Wilkins, EJ ; Browning, BL ; Browning, SR ; Perera, D ; Butzkueven, H ; Carroll, WM ; Chapman, C ; Kermode, AG ; Marriott, M ; Mason, D ; Heard, RN ; Pender, MP ; Slee, M ; Tubridy, N ; Willoughby, E (NATURE PUBLISHING GROUP, 2009-07)
    To identify multiple sclerosis (MS) susceptibility loci, we conducted a genome-wide association study (GWAS) in 1,618 cases and used shared data for 3,413 controls. We performed replication in an independent set of 2,256 cases and 2,310 controls, for a total of 3,874 cases and 5,723 controls. We identified risk-associated SNPs on chromosome 12q13-14 (rs703842, P = 5.4 x 10(-11); rs10876994, P = 2.7 x 10(-10); rs12368653, P = 1.0 x 10(-7)) and upstream of CD40 on chromosome 20q13 (rs6074022, P = 1.3 x 10(-7); rs1569723, P = 2.9 x 10(-7)). Both loci are also associated with other autoimmune diseases. We also replicated several known MS associations (HLA-DR15, P = 7.0 x 10(-184); CD58, P = 9.6 x 10(-8); EVI5-RPL5, P = 2.5 x 10(-6); IL2RA, P = 7.4 x 10(-6); CLEC16A, P = 1.1 x 10(-4); IL7R, P = 1.3 x 10(-3); TYK2, P = 3.5 x 10(-3)) and observed a statistical interaction between SNPs in EVI5-RPL5 and HLA-DR15 (P = 0.001).
  • Item
    Thumbnail Image
    Endogenously regulated Dab2 worsens inflammatory injury in experimental autoimmune encephalomyelitis
    Jokubaitis, VG ; Gresle, MM ; Kemper, DA ; Doherty, W ; Perreau, VM ; Cipriani, TL ; Jonas, A ; Shaw, G ; Kuhlmann, T ; Kilpatrick, TJ ; Butzkueven, H (BIOMED CENTRAL LTD, 2013)
    BACKGROUND: Neuroinflammation regulates both disease pathogenesis and repair in multiple sclerosis. In early multiple sclerosis lesion development, neuroinflammation causes demyelination and axonal injury, the likely final common determinant of disability. Here we report the identification of a novel neuroinflammatory mediator, Disabled-2 (Dab2). Dab2 is an intracellular adaptor protein with previously unknown function in the central nervous system. RESULTS: We report that Dab2 is up-regulated in lesional macrophages/microglia in the spinal cord in murine experimental autoimmune encephalomyelitis, a model of multiple sclerosis. We demonstrate that dab2 expression is positively correlated with experimental autoimmune encephalomyelitis disease severity during the acute disease phase. Furthermore, dab2-deficient mice have a less severe experimental autoimmune encephalomyelitis disease course and suffer less neuroinflammation and less axonal injury than their wild-type littermates. We demonstrate that dab2 expression is strongly associated with the expression of inducible nitric oxide synthase. We further demonstrate that Dab2 is expressed at the protein level by macrophages in early acute human multiple sclerosis lesions and that this correlates with axonal injury. CONCLUSIONS: Together, these results suggest that endogenous Dab2 exacerbates central nervous system inflammation, potentially acting to up-regulate reactive oxygen species expression in macrophages and microglia, and that it is of potential pathogenic relevance in Multiple Sclerosis.