Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses
    Tan, H-X ; Gilbertson, BP ; Jegaskanda, S ; Alcantara, S ; Amarasena, T ; Stambas, J ; McAuley, JL ; Kent, SJ ; De Rose, R (ELSEVIER SCI LTD, 2016-02-24)
    Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.
  • Item
    Thumbnail Image
    High fidelity simian immunodeficiency virus reverse transcriptase mutants have impaired replication in vitro and in vivo
    Lloyd, SB ; Lichtfuss, M ; Amarasena, TH ; Alcantara, S ; De Rose, R ; Tachedjian, G ; Alinejad-Rokny, H ; Venturi, V ; Davenport, MP ; Winnall, WR ; Kent, SJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2016-05)
    The low fidelity of HIV replication facilitates immune and drug escape. Some reverse transcriptase (RT) inhibitor drug-resistance mutations increase RT fidelity in biochemical assays but their effect during viral replication is unclear. We investigated the effect of RT mutations K65R, Q151N and V148I on SIV replication and fidelity in vitro, along with SIV replication in pigtailed macaques. SIVmac239-K65R and SIVmac239-V148I viruses had reduced replication capacity compared to wild-type SIVmac239. Direct virus competition assays demonstrated a rank order of wild-type>K65R>V148I mutants in terms of viral fitness. In single round in vitro-replication assays, SIVmac239-K65R demonstrated significantly higher fidelity than wild-type, and rapidly reverted to wild-type following infection of macaques. In contrast, SIVmac239-Q151N was replication incompetent in vitro and in pigtailed macaques. Thus, we showed that RT mutants, and specifically the common K65R drug-resistance mutation, had impaired replication capacity and higher fidelity. These results have implications for the pathogenesis of drug-resistant HIV.
  • Item
    Thumbnail Image
    Charge Has a Marked Influence on Hyperbranched Polymer Nanoparticle Association in Whole Human Blood
    Glass, JJ ; Chen, L ; Alcantara, S ; Crampin, EJ ; Thurecht, KJ ; De Rose, R ; Kent, SJ (AMER CHEMICAL SOC, 2017-06)
    In this study, we synthesize charge-varied hyperbranched polymers (HBPs) and demonstrate surface charge as a key parameter directing their association with specific human blood cell types. Using fresh human blood, we investigate the association of 5 nm HBPs with six white blood cell populations in their natural milieu by flow cytometry. While most cell types associate with cationic HBPs at 4 °C, at 37 °C phagocytic cells display similar (monocyte, dendritic cell) or greater (granulocyte) association with anionic HBPs compared to cationic HBPs. Neutral HBPs display remarkable stealth properties. Notably, these charge-association patterns are not solely defined by the plasma protein corona and are material and/or size dependent. As HBPs progress toward clinical use as imaging and drug delivery agents, the ability to engineer HBPs with defined biological properties is increasingly important. This knowledge can be used in the rational design of HBPs for more effective delivery to desired cell targets.
  • Item
    Thumbnail Image
    Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics
    Ramarathinam, SH ; Gras, S ; Alcantara, S ; Yeung, AWS ; Mifsud, NA ; Sonza, S ; Illing, PT ; Glaros, EN ; Center, RJ ; Thomas, SR ; Kent, SJ ; Ternette, N ; Purcell, DFJ ; Rossjohn, J ; Purcell, AW (Wiley, 2018-06-01)
    The recognition of pathogen‐derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide‐HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T‐cells leading to the eradication of the infected cell. Here, naturally presented HLA‐B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA‐B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C‐terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine‐modified peptides in the immune response to HIV and other viral infections.
  • Item
    Thumbnail Image
    Timing of Immune Escape Linked to Success or Failure of Vaccination
    Reece, JC ; Loh, L ; Alcantara, S ; Fernandez, CS ; Stambas, J ; Sexton, A ; De Rose, R ; Petravic, J ; Davenport, MP ; Kent, SJ ; Unutmaz, D (PUBLIC LIBRARY SCIENCE, 2010-09-16)
    Successful vaccination against HIV should limit viral replication sufficiently to prevent the emergence of viral immune escape mutations. Broadly directed immunity is likely to be required to limit opportunities for immune escape variants to flourish. We studied the emergence of an SIV Gag cytotoxic T cell immune escape variant in pigtail macaques expressing the Mane-A*10 MHC I allele using a quantitative RT-PCR to measure viral loads of escape and wild type variants. Animals receiving whole Gag expressing vaccines completely controlled an SIV(mac251) challenge, had broader CTL responses and exhibited minimal CTL escape. In contrast, animals vaccinated with only a single CTL epitope and challenged with the same SIV(mac251) stock had high levels of viral replication and rapid CTL escape. Unvaccinated naïve animals exhibited a slower emergence of immune escape variants. Thus narrowly directed vaccination against a single epitope resulted in rapid immune escape and viral levels equivalent to that of naïve unvaccinated animals. These results emphasize the importance of inducing broadly directed HIV-specific immunity that effectively quashes early viral replication and limits the generation of immune escape variants. This has important implications for the selection of HIV vaccines for expanded human trials.
  • Item
    Thumbnail Image
    HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells
    Xu, Y ; Phetsouphanh, C ; Suzuki, K ; Aggrawal, A ; Graff-Dubois, S ; Roche, M ; Bailey, M ; Alcantara, S ; Cashin, K ; Sivasubramaniam, R ; Koelsch, KK ; Autran, B ; Harvey, R ; Gorry, PR ; Moris, A ; Cooper, DA ; Turville, S ; Kent, SJ ; Kelleher, AD ; Zaunders, J (FRONTIERS MEDIA SA, 2017-04-21)
    BACKGROUND: T follicular helper (Tfh) cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells. METHODOLOGY: Tfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay. RESULTS: Phylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int)+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils. CONCLUSION: The major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population. As the generation of Tfh are important for establishing effective immune responses during primary infections, Tfh are likely to be an early target of HIV-1 following transmission, creating an important component of the reservoir that has the potential to expand over time.
  • Item
    Thumbnail Image
    Mucosal and systemic SIV-specific cytotoxic CD4+ T cell hierarchy in protection following intranasal/intramuscular recombinant pox-viral vaccination of pigtail macaques
    Khanna, M ; Jackson, RJ ; Alcantara, S ; Amarasena, TH ; Li, Z ; Kelleher, AD ; Kent, SJ ; Ranasinghe, C (NATURE PORTFOLIO, 2019-04-05)
    A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.
  • Item
    Thumbnail Image
    Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies
    Cui, J ; Ju, Y ; Houston, ZH ; Class, JJ ; Fletcher, NL ; Alcantara, S ; Dai, Q ; Howard, CB ; Mahler, SM ; Wheatley, AK ; De Rose, R ; Brannon, PT ; Paterson, BM ; Donnelly, PS ; Thurecht, K ; Caruso, F ; Kent, SJ (WILEY, 2019-05)
    Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting. The dual specificity of the BsAbs-one arm binds to the PEG particles while the other targets a cell antigen (epidermal growth factor receptor, EGFR)-is exploited to modulate the number of targeting ligands per particle. Increasing the BsAb incubation concentration increases the amount of BsAb tethered to the PEG particles and enhances targeting and internalization into breast cancer cells overexpressing EGFR. The degree of BsAb functionalization does not significantly reduce the stealth properties of the PEG particles ex vivo, as assessed by their interactions with primary human blood granulocytes and monocytes. Although increasing the BsAb amount on PEG particles does not lead to the expected improvement in tumor accumulation in vivo, BsAb functionalization facilitates tumor cell uptake of PEG particles. This work highlights strategies to balance evading nonspecific clearance pathways, while improving tumor targeting and accumulation.
  • Item
    Thumbnail Image
    Templated Polymer Replica Nanoparticles to Facilitate Assessment of Material-Dependent Pharmacokinetics and Biodistribution
    Song, D ; Cui, J ; Sun, H ; Nguyen, T-H ; Alcantara, S ; De Rose, R ; Kent, SJ ; Porter, CJH ; Caruso, F (AMER CHEMICAL SOC, 2017-10-04)
    Surface modification is frequently used to tailor the interactions of nanoparticles with biological systems. In many cases, the chemical nature of the treatments employed to modify the biological interface (for example attachment of hydrophilic polymers or targeting groups) is the focus of attention. However, isolation of the fundamental effects of the materials employed to modify the interface are often confounded by secondary effects imparted by the underlying substrate. Herein, we demonstrate that polymer replica particles templated from degradable mesoporous silica provide a facile means to evaluate the impact of surface modification on the biological interactions of nanomaterials, independent of the substrate. Poly(ethylene glycol) (PEG), poly(N-(2 hydroxypropyl)methacrylamide) (PHPMA), and poly(methacrylic acid) (PMA) were templated onto mesoporous silica and cross-linked and the residual particles were removed. The resulting nanoparticles, comprising interfacial polymer alone, were then investigated using a range of in vitro and in vivo tests. As expected, the PEG particles showed the best stealth properties, and these trends were consistent in both in vitro and in vivo studies. PMA particles showed the highest cell association in cell lines in vitro and were rapidly taken up by monocytes in ex vivo whole blood, properties consistent with the very high in vivo clearance subsequently seen in rats. In contrast, PHPMA particles showed rapid association with both granulocytes and monocytes in ex vivo whole blood, even though in vivo clearance was less rapid than the PMA particles. Rat studies confirmed better systemic exposure for PEG and PHPMA particles when compared to PMA particles. This study provides a new avenue for investigating material-dependent biological behaviors of polymer particles, irrespective of the properties of the underlying core, and provides insights for the selection of polymer particles for future biological applications.
  • Item
    No Preview Available
    Simian immunodeficiency virus infection and immune responses in the pig-tailed macaque testis
    Winnall, WR ; Lloyd, SB ; De Rose, R ; Alcantara, S ; Amarasena, TH ; Hedger, MP ; Girling, JE ; Kent, SJ (FEDERATION AMER SOC EXP BIOL, 2015-03)
    The testis is a site of immune privilege in rodents, and there is evidence that T cell responses are also suppressed in the primate testis. Local immunosuppression is a potential mechanism for HIV persistence in tissue reservoirs that few studies have examined. The response of the pig-tailed macaque testis to SIVmac239 infection was characterized to test this possibility. Testes were surgically removed during early-chronic (10 wk) and late-chronic (24-30 wk) SIV infection in 4 animals and compared with those from 7 uninfected animals. SIV infection caused only minor disruption to the seminiferous epithelium without marked evidence of inflammation or consistent changes in total intratesticular leukocyte numbers. Infection also led to an increase in the relative proportion of testicular effector memory CD8(+) T cell numbers and a corresponding reduction in central memory CD4(+) T cells. A decrease in the relative proportion of resident-type CD163(+) macrophages and DCs was also observed. SIV-specific CD8(+) T cells were detectable in the testis, 10-11 wk after infection by staining with SIV Gag-specific or Tat-specific MHC-I tetramers. However, testicular CD8(+) T cells from the infected animals had suppressed cytokine responses to mitogen activation. These results support the possibility that local immunosuppression in the testis may be restricting the ability of T cells to respond to SIV or HIV infection. Local immunosuppression in the testis may be an underexplored mechanism allowing HIV persistence.