Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study
    Lee, RS ; da Silva, AG ; Baines, SL ; Strachan, J ; Ballard, S ; Carter, GP ; Kwong, JC ; Schultz, MB ; Bulach, DM ; Seemann, T ; Stinear, TP ; Howden, BP (OXFORD UNIV PRESS, 2018-12)
    BACKGROUND: Vancomycin-resistant Enterococcus faecium (VREfm) represent a major source of nosocomial infection worldwide. In Australia, there has been a recent concerning increase in bacteraemia associated with the vanA genotype, prompting investigation into the genomic epidemiology of VREfm. METHODS: A population-level study of VREfm (10 November-9 December 2015) was conducted. A total of 321 VREfm isolates (from 286 patients) across Victoria State were collected and sequenced with Illumina NextSeq. SNPs were used to assess relatedness. STs and genes associated with resistance and virulence were identified. The vanA-harbouring plasmid from an isolate from each ST was assembled using long-read data. Illumina reads from remaining isolates were then mapped to these assemblies to identify their probable vanA-harbouring plasmid. RESULTS: vanA-VREfm comprised 17.8% of isolates. ST203, ST80 and a pstS(-) clade, ST1421, predominated (30.5%, 30.5% and 37.2%, respectively). Most vanB-VREfm were ST796 (77.7%). vanA-VREfm were more closely related within hospitals versus between them [core SNPs 10 (IQR 1-357) versus 356 (179-416), respectively], suggesting discrete introductions of vanA-VREfm, with subsequent intra-hospital transmission. In contrast, vanB-VREfm had similar core SNP distributions within versus between hospitals, due to widespread dissemination of ST796. Different vanA-harbouring plasmids were found across STs. With the exception of ST78 and ST796, Tn1546 transposons also varied. Phylogenetic analysis revealed Australian strains were often interspersed with those from other countries, suggesting ongoing cross-continental transmission. CONCLUSIONS: Emerging vanA-VREfm in Australia is polyclonal, indicating repeat introductions of vanA-VREfm into hospitals and subsequent dissemination. The close relationship to global strains reinforces the need for ongoing screening and control of VREfm in Australia and abroad.
  • Item
    Thumbnail Image
    Genomic Exploration of Within-Host Microevolution Reveals a Distinctive Molecular Signature of Persistent Staphylococcus aureus Bacteraemia
    Giulieri, S ; Baines, S ; Guerillot, R ; Semann, T ; Goncalves da Silva, A ; Schultz, M ; Massey, R ; Holmes, N ; Stinear, T ; Howden, B (BMC, 2018-02-28)
    Background: Large-scale genomic studies of within-host evolution during Staphylococcus aureus bacteraemia (SAB) are needed to understanding bacterial adaptation underlying persistence and thus refining the role of genomics in management of SAB. However, available comparative genomic studies of sequential SAB isolates have tended to focus on selected cases of unusually prolonged bacteraemia, where secondary antimicrobial resistance has developed. To understand the bacterial genomic evolution during SAB more broadly, we applied whole genome sequencing to a large collection of sequential isolates obtained from patients with persistent or relapsing bacteraemia. Results: We show that, while adapation pathways are heterogenous and episode-specific, isolates from persistent bacteraemia have a distinctive molecular signature, characterised by a low mutation frequency and high proportion of non-silent mutations. By performing an extensive analysis of structural genomic variants in addition to point mutations, we found that these often overlooked genetic events are commonly acquired during SAB. We discovered that IS256 insertion may represent the most effective driver of within-host microevolution in selected lineages, with up to three new insertion events per isolate even in the absence of other mutations. Genetic mechanisms resulting in significant phenotypic changes, such as increases in vancomycin resistance, development of small colony phenotypes, and decreases in cytotoxicity, included mutations in key genes (rpoB, stp, agrA) and an IS256 insertion upstream of the walKR operon. Conclusions: This study provides for the first time a large-scale analysis of within-host evolution during invasive S. aureus infection and describes specific patterns of adaptation that will be informative for both understanding S. aureus pathoadaptation and utilising genomics for management of complicated S. aureus infections.
  • Item
    Thumbnail Image
    A phylogenomic framework for assessing the global emergence and evolution of clonal complex 398 methicillin-resistant Staphylococcus aureus
    da Silva, AG ; Baines, SL ; Carter, GP ; Heffernan, H ; French, NP ; Ren, X ; Seemann, T ; Bulach, D ; Kwong, J ; Stinear, TP ; Howden, BP ; Williamson, DA (MICROBIOLOGY SOC, 2017-01)
    Distinct clones of methicillin-resistant Staphylococcus aureus (MRSA) have emerged as important causes of infection in individuals who have exposure to livestock (livestock-associated MRSA; LA-MRSA). Clonal complex 398 (CC398) is the most prevalent LA-MRSA clone, and has been reported from several geographical settings, including Europe, the Americas and Asia. To understand the factors contributing to the global dissemination of this clone, we analysed CC398 MRSA isolates from New Zealand (NZ), a geographically isolated country with an economy strongly dependent on livestock farming. We supplemented the NZ CC398 MRSA collection with global datasets of CC398 MRSA and CC398 methicillin-susceptible S. aureus. Here, we demonstrate multiple sporadic incursions of CC398 MRSA into NZ, as well as recent importation and spread of a swine-associated clade related to the European LA-MRSA lineage. Within a larger global phylogenomic framework, Bayesian modelling suggested that this NZ clade emerged in the late 2000s, with a probable origin in swine from Western Europe. Elucidating the factors responsible for the incursion and spread of LA-MRSA in geographically distant regions, such as NZ, provides important insights into global pathways of S. aureus transmission, and will inform strategies to control importation and spread.
  • Item
    Thumbnail Image
    Genomic Insights into a Sustained National Outbreak of Yersinia pseudotuberculosis
    Williamson, DA ; Baines, SL ; Carter, GP ; da silva, AG ; Ren, X ; Sherwood, J ; Dufour, M ; Schultz, MB ; French, NP ; Seemann, T ; Stinear, TP ; Howden, BP (OXFORD UNIV PRESS, 2016-12)
    In 2014, a sustained outbreak of yersiniosis due to Yersinia pseudotuberculosis occurred across all major cities in New Zealand (NZ), with a total of 220 laboratory-confirmed cases, representing one of the largest ever reported outbreaks of Y. pseudotuberculosis. Here, we performed whole genome sequencing of outbreak-associated isolates to produce the largest population analysis to date of Y. pseudotuberculosis, giving us unprecedented capacity to understand the emergence and evolution of the outbreak clone. Multivariate analysis incorporating our genomic and clinical epidemiological data strongly suggested a single point-source contamination of the food chain, with subsequent nationwide distribution of contaminated produce. We additionally uncovered significant diversity in key determinants of virulence, which we speculate may help explain the high morbidity linked to this outbreak.
  • Item
    Thumbnail Image
    Genomic investigation of Staphylococcus aureus recovered from Gambian women and newborns following an oral dose of intra-partum azithromycin
    Bojang, A ; Baines, SL ; Donovan, L ; Guerillot, R ; Stevens, K ; Higgs, C ; Bottomley, C ; Secka, O ; Schultz, MB ; da Silva, AG ; Seemann, T ; Stinear, TP ; Roca, A ; Howden, BP (OXFORD UNIV PRESS, 2019-11)
    BACKGROUND: Oral azithromycin given during labour reduces carriage of bacteria responsible for neonatal sepsis, including Staphylococcus aureus. However, there is concern that this may promote drug resistance. OBJECTIVES: Here, we combine genomic and epidemiological data on S. aureus isolated from mothers and babies in a randomized intra-partum azithromycin trial (PregnAnZI) to describe bacterial population dynamics and resistance mechanisms. METHODS: Participants from both arms of the trial, who carried S. aureus in day 3 and day 28 samples post-intervention, were included. Sixty-six S. aureus isolates (from 7 mothers and 10 babies) underwent comparative genome analyses and the data were then combined with epidemiological data. Trial registration (main trial): ClinicalTrials.gov Identifier NCT01800942. RESULTS: Seven S. aureus STs were identified, with ST5 dominant (n = 40, 61.0%), followed by ST15 (n = 11, 17.0%). ST5 predominated in the placebo arm (73.0% versus 49.0%, P = 0.039) and ST15 in the azithromycin arm (27.0% versus 6.0%, P = 0.022). In azithromycin-resistant isolates, msr(A) was the main macrolide resistance gene (n = 36, 80%). Ten study participants, from both trial arms, acquired azithromycin-resistant S. aureus after initially harbouring a susceptible isolate. In nine (90%) of these cases, the acquired clone was an msr(A)-containing ST5 S. aureus. Long-read sequencing demonstrated that in ST5, msr(A) was found on an MDR plasmid. CONCLUSIONS: Our data reveal in this Gambian population the presence of a dominant clone of S. aureus harbouring plasmid-encoded azithromycin resistance, which was acquired by participants in both arms of the study. Understanding these resistance dynamics is crucial to defining the public health drug resistance impacts of azithromycin prophylaxis given during labour in Africa.
  • Item
    Thumbnail Image
    Remodeling of pSK1 Family Plasmids and Enhanced Chlorhexidine Tolerance in a Dominant Hospital Lineage of Methicillin-Resistant Staphylococcus aureus
    Baines, SL ; Jensen, SO ; Firth, N ; da Silva, AG ; Seemann, T ; Carter, GP ; Williamson, DA ; Howden, BP ; Stinear, TP (AMER SOC MICROBIOLOGY, 2019-05)
    Staphylococcus aureus is a significant human pathogen whose evolution and adaptation have been shaped in part by mobile genetic elements (MGEs), facilitating the global spread of extensive antimicrobial resistance. However, our understanding of the evolutionary dynamics surrounding MGEs, in particular, how changes in the structure of multidrug resistance (MDR) plasmids may influence important staphylococcal phenotypes, is incomplete. Here, we undertook a population and functional genomics study of 212 methicillin-resistant S. aureus (MRSA) sequence type 239 (ST239) isolates collected over 32 years to explore the evolution of the pSK1 family of MDR plasmids, illustrating how these plasmids have coevolved with and contributed to the successful adaptation of this persistent MRSA lineage. Using complete genomes and temporal phylogenomics, we reconstructed the evolution of the pSK1 family lineage from its emergence in the late 1970s and found that multiple structural variants have arisen. Plasmid maintenance and stability were linked to IS256- and IS257-mediated chromosomal integration and disruption of the plasmid replication machinery. Overlaying genomic comparisons with phenotypic susceptibility data for gentamicin, trimethoprim, and chlorhexidine, it appeared that pSK1 has contributed to enhanced resistance in ST239 MRSA isolates through two mechanisms: (i) acquisition of plasmid-borne resistance mechanisms increasing the rates of gentamicin resistance and reduced chlorhexidine susceptibility and (ii) changes in the plasmid configuration linked with further enhancement of chlorhexidine tolerance. While the exact mechanism of enhanced tolerance remains elusive, this research has uncovered a potential evolutionary response of ST239 MRSA to biocides, one of which may contribute to the ongoing persistence and adaptation of this lineage within health care institutions.
  • Item
    Thumbnail Image
    Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak
    Kwong, JC ; Lane, CR ; Romanes, F ; da Silva, AG ; Easton, M ; Cronin, K ; Waters, MJ ; Tomita, T ; Stevens, K ; Schultz, MB ; Baines, SL ; Sherry, NL ; Carter, GP ; Mu, A ; Sait, M ; Ballard, SA ; Seemann, T ; Stinear, TP ; Howden, BP (PEERJ INC, 2018-01-03)
    BACKGROUND: Until recently, Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae were rarely identified in Australia. Following an increase in the number of incident cases across the state of Victoria, we undertook a real-time combined genomic and epidemiological investigation. The scope of this study included identifying risk factors and routes of transmission, and investigating the utility of genomics to enhance traditional field epidemiology for informing management of established widespread outbreaks. METHODS: All KPC-producing Enterobacteriaceae isolates referred to the state reference laboratory from 2012 onwards were included. Whole-genome sequencing was performed in parallel with a detailed descriptive epidemiological investigation of each case, using Illumina sequencing on each isolate. This was complemented with PacBio long-read sequencing on selected isolates to establish high-quality reference sequences and interrogate characteristics of KPC-encoding plasmids. RESULTS: Initial investigations indicated that the outbreak was widespread, with 86 KPC-producing Enterobacteriaceae isolates (K. pneumoniae 92%) identified from 35 different locations across metropolitan and rural Victoria between 2012 and 2015. Initial combined analyses of the epidemiological and genomic data resolved the outbreak into distinct nosocomial transmission networks, and identified healthcare facilities at the epicentre of KPC transmission. New cases were assigned to transmission networks in real-time, allowing focussed infection control efforts. PacBio sequencing confirmed a secondary transmission network arising from inter-species plasmid transmission. Insights from Bayesian transmission inference and analyses of within-host diversity informed the development of state-wide public health and infection control guidelines, including interventions such as an intensive approach to screening contacts following new case detection to minimise unrecognised colonisation. CONCLUSION: A real-time combined epidemiological and genomic investigation proved critical to identifying and defining multiple transmission networks of KPC Enterobacteriaceae, while data from either investigation alone were inconclusive. The investigation was fundamental to informing infection control measures in real-time and the development of state-wide public health guidelines on carbapenemase-producing Enterobacteriaceae surveillance and management.
  • Item
    Thumbnail Image
    Genomic analysis of ST88 community-acquired methicillin resistant Staphylococcus aureus in Ghana
    Kpeli, G ; Buultjens, AH ; Giulieri, S ; Owusu-Mireku, E ; Aboagye, SY ; Baines, SL ; Seemann, T ; Bulach, D ; da Silva, AG ; Monk, IR ; Howden, BP ; Pluschke, G ; Yeboah-Manu, D ; Stinear, T (PEERJ INC, 2017-02-28)
    BACKGROUND: The emergence and evolution of community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strains in Africa is poorly understood. However, one particular MRSA lineage called ST88, appears to be rapidly establishing itself as an "African" CA-MRSA clone. In this study, we employed whole genome sequencing to provide more information on the genetic background of ST88 CA-MRSA isolates from Ghana and to describe in detail ST88 CA-MRSA isolates in comparison with other MRSA lineages worldwide. METHODS: We first established a complete ST88 reference genome (AUS0325) using PacBio SMRT sequencing. We then used comparative genomics to assess relatedness among 17 ST88 CA-MRSA isolates recovered from patients attending Buruli ulcer treatment centres in Ghana, three non-African ST88s and 15 other MRSA lineages. RESULTS: We show that Ghanaian ST88 forms a discrete MRSA lineage (harbouring SCCmec-IV [2B]). Gene content analysis identified five distinct genomic regions enriched among ST88 isolates compared with the other S. aureus lineages. The Ghanaian ST88 isolates had only 658 core genome SNPs and there was no correlation between phylogeny and geography, suggesting the recent spread of this clone. The lineage was also resistant to multiple classes of antibiotics including β-lactams, tetracycline and chloramphenicol. DISCUSSION: This study reveals that S. aureus ST88-IV is a recently emerging and rapidly spreading CA-MRSA clone in Ghana. The study highlights the capacity of small snapshot genomic studies to provide actionable public health information in resource limited settings. To our knowledge this is the first genomic assessment of the ST88 CA-MRSA clone.
  • Item
    Thumbnail Image
    A Supervised Statistical Learning Approach for Accurate Legionella pneumophila Source Attribution during Outbreaks
    Buultjens, AH ; Chua, KYL ; Baines, SL ; Kwong, J ; Gao, W ; Cutcher, Z ; Adcock, S ; Ballard, S ; Schultz, MB ; Tomita, T ; Subasinghe, N ; Carter, GP ; Pidot, SJ ; Franklin, L ; Seemann, T ; Da Silva, AG ; Howden, BP ; Stinear, TP ; Schaffner, DW (AMER SOC MICROBIOLOGY, 2017-11)
    Public health agencies are increasingly relying on genomics during Legionnaires' disease investigations. However, the causative bacterium (Legionella pneumophila) has an unusual population structure, with extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires' disease outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can confound cluster identification using standard phylogenomic methods. Here, we show that a statistical learning approach based on L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for defining outbreak clusters and accurately predicts exposure sources for clinical cases. We illustrate the performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients and cooling towers in Melbourne, Australia, between 1994 and 2014. This collection included one of the largest reported Legionnaires' disease outbreaks, which involved 125 cases at an aquarium. Using only sequence data from L. pneumophila cooling tower isolates and including all core genome variation, we built a multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-specific genomic signatures and then used it to predict the origin of clinical isolates. Model assignments were 93% congruent with epidemiological data, including the aquarium Legionnaires' disease outbreak and three other unrelated outbreak investigations. We applied the same approach to a recently described investigation of Legionnaires' disease within a UK hospital and observed a model predictive ability of 86%. We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide objective source attribution data for outbreak investigations.IMPORTANCE Microbial outbreak investigations are moving to a paradigm where whole-genome sequencing and phylogenetic trees are used to support epidemiological investigations. It is critical that outbreak source predictions are accurate, particularly for pathogens, like Legionella pneumophila, which can spread widely and rapidly via cooling system aerosols, causing Legionnaires' disease. Here, by studying hundreds of Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered limitations with the phylogenetic approach that could lead to a misidentification of outbreak sources. We implement instead a statistical learning technique that eliminates the ambiguity of inferring disease transmission from phylogenies. Our approach takes geolocation information and core genome variation from environmental L. pneumophila isolates to build statistical models that predict with high confidence the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of the technique by applying it to unrelated Legionnaires' disease outbreaks in Australia and the UK.
  • Item
    Thumbnail Image
    Comprehensive antibiotic-linked mutation assessment by resistance mutation sequencing (RM-seq)
    Guerillot, R ; Li, L ; Baines, S ; Howden, B ; Schultz, MB ; Seemann, T ; Monk, I ; Pidot, SJ ; Gao, W ; Giulieri, S ; da Silva, AG ; D'Agata, A ; Tomita, T ; Peleg, AY ; Stinear, TP ; Howden, BP (BMC, 2018-08-31)
    Mutation acquisition is a major mechanism of bacterial antibiotic resistance that remains insufficiently characterised. Here we present RM-seq, a new amplicon-based deep sequencing workflow based on a molecular barcoding technique adapted from Low Error Amplicon sequencing (LEA-seq). RM-seq allows detection and functional assessment of mutational resistance at high throughput from mixed bacterial populations. The sensitive detection of very low-frequency resistant sub-populations permits characterisation of antibiotic-linked mutational repertoires in vitro and detection of rare resistant populations during infections. Accurate quantification of resistance mutations enables phenotypic screening of mutations conferring pleiotropic phenotypes such as in vivo persistence, collateral sensitivity or cross-resistance. RM-seq will facilitate comprehensive detection, characterisation and surveillance of resistant bacterial populations ( https://github.com/rguerillot/RM-seq ).