Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    No Preview Available
    A CAF01-adjuvanted whole asexual blood-stage liposomal malaria vaccine induces a CD4+ T-cell-dependent strain-transcending protective immunity in rodent models
    Okoth, WA ; Ho, M-F ; Zaman, M ; Cooper, E ; Som, P ; Burgess, M ; Walton, M ; Nevagi, RJ ; Beattie, L ; Murphy, D ; Stanisic, DI ; Good, MF ; Miller, LH (AMER SOC MICROBIOLOGY, 2023-12-19)
    Malaria is a devastating disease that has claimed many lives, especially children <5 years of age in Sub-Saharan Africa, as documented in World Malaria Reports by WHO. Even though vector control and chemoprevention tools have helped with elimination efforts in some, if not all, endemic areas, these efforts have been hampered by serious issues (including drug and insecticide resistance and disruption to social cohesion caused by the COVID-19 pandemic). Development of an effective malaria vaccine is the alternative preventative tool in the fight against malaria. Vaccines save millions of lives each year and have helped in elimination and/or eradication of global diseases. Development of a highly efficacious malaria vaccine that will ensure long-lasting protective immunity will be a "game-changing" prevention strategy to finally eradicate the disease. Such a vaccine will need to counteract the significant obstacles that have been hampering subunit vaccine development to date, including antigenic polymorphism, sub-optimal immunogenicity, and waning vaccine efficacy.
  • Item
    Thumbnail Image
    Display of Native Antigen on cDC1 That Have Spatial Access to Both T and B Cells Underlies Efficient Humoral Vaccination.
    Kato, Y ; Steiner, TM ; Park, H-Y ; Hitchcock, RO ; Zaid, A ; Hor, JL ; Devi, S ; Davey, GM ; Vremec, D ; Tullett, KM ; Tan, PS ; Ahmet, F ; Mueller, SN ; Alonso, S ; Tarlinton, DM ; Ploegh, HL ; Kaisho, T ; Beattie, L ; Manton, JH ; Fernandez-Ruiz, D ; Shortman, K ; Lahoud, MH ; Heath, WR ; Caminschi, I (American Association of Immunologists, 2020-10-01)
    Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses. This conclusion is, however, at odds with evidence that targeting Ag to Clec9A (DNGR1), expressed by cDC1, induces strong humoral responses. In this study, we reveal that murine cDC1 interact extensively with B cells at the border of B cell follicles and, when Ag is targeted to Clec9A, can display native Ag for B cell activation. This leads to efficient induction of humoral immunity. Our findings indicate that surface display of native Ag on cDC with access to both T and B cells is key to efficient humoral vaccination.
  • Item
    No Preview Available
    Vaccine-induced inflammation and inflammatory monocytes promote CD4+ T cell-dependent immunity against murine salmonellosis
    Wang, N ; SCOTT, TA ; KUPZ, A ; Shreenivas, MM ; Peres, NG ; Hocking, DM ; YANG, C ; Jebeli, L ; Beattie, L ; Groom, JR ; Pierce, TP ; Wakim, LM ; Bedoui, S ; Strugnell, RA ; Baumler, AJ (Public Library of Science (PLoS), 2023-09-21)
    Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.
  • Item
    Thumbnail Image
    Development of Plasmodium-specific liver-resident memory CD8+ T cells after heat-killed sporozoite immunization in mice
    Ghilas, S ; Enders, MH ; May, R ; Holz, LE ; Fernandez-Ruiz, D ; Cozijnsen, A ; Mollard, V ; Cockburn, IA ; McFadden, G ; Heath, WR ; Beattie, L (WILEY, 2021-05)
    Malaria remains a major cause of mortality in the world and an efficient vaccine is the best chance of reducing the disease burden. Vaccination strategies for the liver stage of disease that utilise injection of live radiation-attenuated sporozoites (RAS) confer sterile immunity, which is mediated by CD8+ memory T cells, with liver-resident memory T cells (TRM ) being particularly important. We have previously described a TCR transgenic mouse, termed PbT-I, where all CD8+ T cells recognize a specific peptide from Plasmodium. PbT-I form liver TRM cells upon RAS injection and are capable of protecting mice against challenge infection. Here, we utilize this transgenic system to examine whether nonliving sporozoites, killed by heat treatment (HKS), could trigger the development of Plasmodium-specific liver TRM cells. We found that HKS vaccination induced the formation of memory CD8+ T cells in the spleen and liver, and importantly, liver TRM cells were fewer in number than that induced by RAS. Crucially, we showed the number of TRM cells was significantly higher when HKS were combined with the glycolipid α-galactosylceramide as an adjuvant. In the future, this work could lead to development of an antimalaria vaccination strategy that does not require live sporozoites, providing greater utility.
  • Item
    Thumbnail Image
    Marginal zone B cells acquire dendritic cell functions by trogocytosis
    Schriek, P ; Ching, AC ; Moily, NS ; Moffat, J ; Beattie, L ; Steiner, TM ; Hosking, LM ; Thurman, JM ; Holers, VM ; Ishido, S ; Lahoud, MH ; Caminschi, I ; Heath, WR ; Mintern, JD ; Villadangos, JA (AMER ASSOC ADVANCEMENT SCIENCE, 2022-02-11)
    Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.
  • Item
    Thumbnail Image
    Plasmodium berghei Hsp90 contains a natural immunogenic I-Ab-restricted antigen common to rodent and human Plasmodium species.
    Enders, MH ; Bayarsaikhan, G ; Ghilas, S ; Chua, YC ; May, R ; de Menezes, MN ; Ge, Z ; Tan, PS ; Cozijnsen, A ; Mollard, V ; Yui, K ; McFadden, GI ; Lahoud, MH ; Caminschi, I ; Purcell, AW ; Schittenhelm, RB ; Beattie, L ; Heath, WR ; Fernandez-Ruiz, D (Elsevier BV, 2021)
    Thorough understanding of the role of CD4 T cells in immunity can be greatly assisted by the study of responses to defined specificities. This requires knowledge of Plasmodium-derived immunogenic epitopes, of which only a few have been identified, especially for the mouse C57BL/6 background. We recently developed a TCR transgenic mouse line, termed PbT-II, that produces CD4+ T cells specific for an MHC class II (I-Ab)-restricted Plasmodium epitope and is responsive to both sporozoites and blood-stage P. berghei. Here, we identify a peptide within the P. berghei heat shock protein 90 as the cognate epitope recognised by PbT-II cells. We show that C57BL/6 mice infected with P. berghei blood-stage induce an endogenous CD4 T cell response specific for this epitope, indicating cells of similar specificity to PbT-II cells are present in the naïve repertoire. Adoptive transfer of in vitro activated TH1-, or particularly TH2-polarised PbT-II cells improved control of P. berghei parasitemia in C57BL/6 mice and drastically reduced the onset of experimental cerebral malaria. Our results identify a versatile, potentially protective MHC-II restricted epitope useful for exploration of CD4 T cell-mediated immunity and vaccination strategies against malaria.
  • Item
    Thumbnail Image
    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection
    Sebina, I ; James, KR ; Soon, MSF ; Fogg, LG ; Best, SE ; Rivera, FDL ; de Oca, MM ; Amante, FH ; Thomas, BS ; Beattie, L ; Souza-Fonseca-Guimaraes, F ; Smyth, MJ ; Hertzog, PJ ; Hill, GR ; Hutloff, A ; Engwerda, CR ; Haque, A ; Mota, MM (PUBLIC LIBRARY SCIENCE, 2016-11)
    Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria.
  • Item
    Thumbnail Image
    Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection
    de Oca, MM ; Kumar, R ; Rivera, FDL ; Amante, FH ; Sheel, M ; Faleiro, RJ ; Bunn, PT ; Best, SE ; Beattie, L ; Ng, SS ; Edwards, CL ; Boyle, GM ; Price, RN ; Anstey, NM ; Loughland, JR ; Burel, J ; Doolan, DL ; Haque, A ; McCarthy, JS ; Engwerda, CR (CELL PRESS, 2016-10-04)
    The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement.
  • Item
    No Preview Available
    B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis
    Moore, JWJ ; Beattie, L ; Dalton, JE ; Owens, BMJ ; Maroof, A ; Coles, MC ; Kaye, PM ; Kelly, BL (PUBLIC LIBRARY SCIENCE, 2012-03-30)
    Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where ≈60% of B cells are located within granulomas, with that of naïve mice. In infected mice, there was a small increase in mIgM(lo)mIgD(+) mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naïve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site.
  • Item
    Thumbnail Image
    A Transcriptomic Network Identified in Uninfected Macrophages Responding to Inflammation Controls Intracellular Pathogen Survival
    Beattie, L ; Hermida, MD-R ; Moore, JWJ ; Maroof, A ; Brown, N ; Lagos, D ; Kaye, PM (CELL PRESS, 2013-09-11)
    Intracellular pathogens modulate host cell function to promote their survival. However, in vitro infection studies do not account for the impact of host-derived inflammatory signals. Examining the response of liver-resident macrophages (Kupffer cells) in mice infected with the parasite Leishmania donovani, we identified a transcriptomic network operating in uninfected Kupffer cells exposed to inflammation but absent from Kupffer cells from the same animal that contained intracellular Leishmania. To test the hypothesis that regulated expression of genes within this transcriptomic network might impact parasite survival, we pharmacologically perturbed the activity of retinoid X receptor alpha (RXRα), a key hub within this network, and showed that this intervention enhanced the innate resistance of Kupffer cells to Leishmania infection. Our results illustrate a broadly applicable strategy for understanding the host response to infection in vivo and identify Rxra as the hub of a gene network controlling antileishmanial resistance.