Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Temporal regulation of natural Killer T cell interferon gamma responses by β-catenin-Dependent and -Independent Wnt signaling
    Kling, JC ; Jordan, MA ; Pitt, LA ; Meiners, J ; Thao, T-T ; Le, ST ; Nguyen, TTK ; Mittal, D ; Villani, R ; Steptoe, RJ ; Khosrotehrani, K ; Berzins, SP ; Baxter, AG ; Godfrey, DI ; Blumenthal, A (FRONTIERS MEDIA SA, 2018-03-16)
    Natural killer T (NKT) cells are prominent innate-like lymphocytes in the liver with critical roles in immune responses during infection, cancer, and autoimmunity. Interferon gamma (IFN-γ) and IL-4 are key cytokines rapidly produced by NKT cells upon recognition of glycolipid antigens presented by antigen-presenting cells (APCs). It has previously been reported that the transcriptional coactivator β-catenin regulates NKT cell differentiation and functionally biases NKT cell responses toward IL-4, at the expense of IFN-γ production. β-Catenin is not only a central effector of Wnt signaling but also contributes to other signaling networks. It is currently unknown whether Wnt ligands regulate NKT cell functions. We thus investigated how Wnt ligands and β-catenin activity shape liver NKT cell functions in vivo in response to the glycolipid antigen, α-galactosylceramide (α-GalCer) using a mouse model. Pharmacologic targeting of β-catenin activity with ICG001, as well as myeloid-specific genetic ablation of Wntless (Wls), to specifically target Wnt protein release by APCs, enhanced early IFN-γ responses. By contrast, within several hours of α-GalCer challenge, myeloid-specific Wls deficiency, as well as pharmacologic targeting of Wnt release using the small molecule inhibitor IWP-2 impaired α-GalCer-induced IFN-γ responses, independent of β-catenin activity. These data suggest that myeloid cell-derived Wnt ligands drive early Wnt/β-catenin signaling that curbs IFN-γ responses, but that, subsequently, Wnt ligands sustain IFN-γ expression independent of β-catenin activity. Our analyses in ICG001-treated mice confirmed a role for β-catenin activity in driving early IL-4 responses by liver NKT cells. However, neither pharmacologic nor genetic perturbation of Wnt production affected the IL-4 response, suggesting that IL-4 production by NKT cells in response to α-GalCer is not driven by released Wnt ligands. Collectively, these data reveal complex temporal roles of Wnt ligands and β-catenin signaling in the regulation of liver NKT cell activation, and highlight Wnt-dependent and -independent contributions of β-catenin to NKT cell functions.
  • Item
    Thumbnail Image
    Divergent SATB1 expression across human life span and tissue compartments
    Nussing, S ; Koay, H-F ; Sant, S ; Loudovaris, T ; Mannering, SI ; Lappas, M ; d'Udekem, Y ; Konstantinov, IE ; Berzins, SP ; Rimmelzwaan, GF ; Turner, SJ ; Clemens, EB ; Godfrey, DI ; Thi, HON ; Kedzierska, K (WILEY, 2019-05)
    Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.
  • Item
    Thumbnail Image
    Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers
    Kelly, J ; Minoda, Y ; Meredith, T ; Cameron, G ; Philipp, M-S ; Pellicci, DG ; Corbett, AJ ; Kurts, C ; Gray, DHD ; Godfrey, D ; Kannourakis, G ; Berzins, SP (WILEY, 2019-09)
    Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize antigens derived from riboflavin biosynthesis. In addition to anti-microbial functions, human MAIT cells are associated with cancers, autoimmunity, allergies and inflammatory disorders, although their role is poorly understood. Activated MAIT cells are well known for their rapid release of Th1 and Th17 cytokines, but we have discovered that chronic stimulation can also lead to potent interleukin (IL)-13 expression. We used RNA-seq and qRT-PCR to demonstrate high expression of the IL-13 gene in chronically stimulated MAIT cells, and directly identify IL-13 using intracellular flow cytometry and multiplex bead analysis of MAIT cell cultures. This unexpected finding has important implications for IL-13-dependent diseases, such as colorectal cancer (CRC), that occur in mucosal areas where MAIT cells are abundant. We identify MAIT cells near CRC tumors and show that these areas and precancerous polyps express high levels of the IL-13 receptor, which promotes tumor progression and metastasis. Our data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL-13 can be a critical factor.
  • Item
    Thumbnail Image
    Normal thymocyte negative selection in TRAIL-deficient mice
    Cretney, E ; Uldrich, AP ; Berzins, SP ; Strasser, A ; Godfrey, DI ; Smyth, MJ (ROCKEFELLER UNIV PRESS, 2003-08-04)
    The molecular basis of thymocyte negative selection, which plays a critical role in establishing and maintaining immunological tolerance, is not yet resolved. In particular, the importance of the death receptor subgroup of the tumor necrosis factor (TNF)-family has been the subject of many investigations, with equivocal results. A recent report suggested that TRAIL was a critical factor in this process, a result that does not fit well with previous studies that excluded a role for the FADD-caspase 8 pathway, which is essential for TRAIL and Fas ligand (FasL) signaling, in negative selection. We have investigated intrathymic negative selection of TRAIL-deficient thymocytes, using four well-established models, including antibody-mediated TCR/CD3 ligation in vitro, stimulation with endogenous superantigen in vitro and in vivo, and treatment with exogenous superantigen in vitro. We were unable to demonstrate a role for TRAIL signaling in any of these models, suggesting that this pathway is not a critical factor for thymocyte negative selection.
  • Item
    Thumbnail Image
    Human blood MAIT cell subsets defined using MR1 tetramers
    Gherardin, NA ; Souter, MNT ; Koay, H-F ; Mangas, KM ; Seemann, T ; Stinear, TP ; Eckle, SBG ; Berzins, SP ; d'Udekem, Y ; Konstantinov, IE ; Fairlie, DP ; Ritchie, DS ; Neeson, PJ ; Pellicci, DG ; Uldrich, AP ; McCluskey, J ; Godfrey, DI (WILEY, 2018-05)
    Mucosal-associated invariant T (MAIT) cells represent up to 10% of circulating human T cells. They are usually defined using combinations of non-lineage-specific (surrogate) markers such as anti-TRAV1-2, CD161, IL-18Rα and CD26. The development of MR1-Ag tetramers now permits the specific identification of MAIT cells based on T-cell receptor specificity. Here, we compare these approaches for identifying MAIT cells and show that surrogate markers are not always accurate in identifying these cells, particularly the CD4+ fraction. Moreover, while all MAIT cell subsets produced comparable levels of IFNγ, TNF and IL-17A, the CD4+ population produced more IL-2 than the other subsets. In a human ontogeny study, we show that the frequencies of most MR1 tetramer+ MAIT cells, with the exception of CD4+ MAIT cells, increased from birth to about 25 years of age and declined thereafter. We also demonstrate a positive association between the frequency of MAIT cells and other unconventional T cells including Natural Killer T (NKT) cells and Vδ2+ γδ T cells. Accordingly, this study demonstrates that MAIT cells are phenotypically and functionally diverse, that surrogate markers may not reliably identify all of these cells, and that their numbers are regulated in an age-dependent manner and correlate with NKT and Vδ2+ γδ T cells.
  • Item
    No Preview Available
    A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage
    Koay, H-F ; Gherardin, NA ; Enders, A ; Loh, L ; Mackay, LK ; Almeida, CF ; Russ, BE ; Nold-Petry, CA ; Nold, MF ; Bedoui, S ; Chen, Z ; Corbett, AJ ; Eckle, SBG ; Meehan, B ; d'Udekem, Y ; Konstantinov, IE ; Lappas, M ; Liu, L ; Goodnow, CC ; Fairlie, DP ; Rossjohn, J ; Chong, MM ; Kedzierska, K ; Berzins, SP ; Belz, GT ; McCluskey, J ; Uldrich, AP ; Godfrey, DI ; Pellicci, DG (NATURE PUBLISHING GROUP, 2016-11)
    Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
  • Item
    Thumbnail Image
    Natural killer T cell defects in multiple myeloma and the impact of lenalidomide therapy
    Chan, AC ; Neeson, P ; Leeansyah, E ; Tainton, K ; Quach, H ; Prince, HM ; Harrison, SJ ; Godfrey, DI ; Ritchie, D ; Berzins, SP (WILEY, 2014-01)
    The causes of multiple myeloma (MM) remain obscure and there are few known risk factors; however, natural killer T (NKT) cell abnormalities have been reported in patients with MM, and therapeutic targeting of NKT cells is promoted as a potential treatment. We characterized NKT cell defects in treated and untreated patients with MM and determined the impact of lenalidomide therapy on the NKT cell pool. Lenalidomide is an immunomodulatory drug with co-stimulatory effects on NKT cells in vitro and is an approved treatment for MM, although its mode of action in that context is not well defined. We find that patients with relapsed/progressive MM had a marked deficiency in NKT cell numbers. In contrast, newly diagnosed patients had relatively normal NKT cell frequency and function prior to treatment, although a specific NKT cell deficiency emerged after high-dose melphalan and autologous stem cell transplantation (ASCT) regimen. This also impacted NK cells and conventional T cells, but the recovery of NKT cells was considerably delayed, resulting in a prolonged, treatment-induced NKT cell deficit. Longitudinal analysis of individual patients revealed that lenalidomide therapy had no in-vivo impact on NKT cell numbers or cytokine production, either as induction therapy, or as maintenance therapy following ASCT, indicating that its clinical benefits in this setting are independent of NKT cell modulation.
  • Item
    Thumbnail Image
    Ex-vivo analysis of human Natural Killer T cells demonstrates heterogeneity between tissues and within established CD4+ and CD4- subsets
    Chan, AC ; Leeansyah, E ; Cochrane, A ; d'Acoz, YD ; Mittag, D ; Harrison, LC ; Godfrey, DI ; Berzins, SP (WILEY-BLACKWELL, 2013-04)
    Our understanding of human type 1 natural killer T (NKT) cells has been heavily dependent on studies of cells from peripheral blood. These have identified two functionally distinct subsets defined by expression of CD4, although it is widely believed that this underestimates the true number of subsets. Two recent studies supporting this view have provided more detail about diversity of the human NKT cells, but relied on analysis of NKT cells from human blood that had been expanded in vitro prior to analysis. In this study we extend those findings by assessing the heterogeneity of CD4(+) and CD4(-) human NKT cell subsets from peripheral blood, cord blood, thymus and spleen without prior expansion ex vivo, and identifying for the first time cytokines expressed by human NKT cells from spleen and thymus. Our comparative analysis reveals highly heterogeneous expression of surface antigens by CD4(+) and CD4(-) NKT cell subsets and identifies several antigens whose differential expression correlates with the cytokine response. Collectively, our findings reveal that the common classification of NKT cells into CD4(+) and CD4(-) subsets fails to reflect the diversity of this lineage, and that more studies are needed to establish the functional significance of the antigen expression patterns and tissue residency of human NKT cells.
  • Item
    Thumbnail Image
    Localization of Idd11 is not associated with thymus and NKT cell abnormalities in NOD mice
    Brodnicki, TC ; Fletcher, AL ; Pellicci, DG ; Berzins, SP ; McClive, P ; Quirk, F ; Webster, KE ; Scott, HS ; Boyd, RL ; Godfrey, DI ; Morahan, G (AMER DIABETES ASSOC, 2005-12)
    Congenic mouse strains provide a unique resource for genetic dissection and biological characterization of chromosomal regions associated with diabetes progression in the nonobese diabetic (NOD) mouse. Idd11, a mouse diabetes susceptibility locus, was previously localized to a region on chromosome 4. Comparison of a panel of subcongenic NOD mouse strains with different intervals derived from the nondiabetic C57BL/6 (B6) strain now maps Idd11 to an approximately 8-Mb interval. B6-derived intervals protected congenic NOD mice from diabetes onset, even though lymphocytic infiltration of pancreatic islets was similar to that found in NOD mice. In addition, neither thymic structural irregularities nor NKT cell deficiencies were ameliorated in diabetes-resistant congenic NOD mice, indicating that Idd11 does not contribute to these abnormalities, which do not need to be corrected to prevent disease.
  • Item
    Thumbnail Image
    The influence of CD1d in postselection NKT cell maturation and homeostasis
    McNab, FW ; Berzins, SP ; Pellicci, DG ; Kyparissoudis, K ; Field, K ; Smyth, MJ ; Godfrey, DI (AMER ASSOC IMMUNOLOGISTS, 2005-09-15)
    After being positively selected on CD1d-expressing thymocytes, NKT cells undergo a series of developmental changes that can take place inside or outside the thymus. We asked whether CD1d continues to play a role in late-stage NKT cell development and, in particular, during the functionally significant acquisition of NK1.1 that is indicative of NKT cell maturity. We report that CD1d is indeed crucial for this step, because immature NK1.1(-) NKT cells fail to fully mature when transferred to a CD1d-deficient environment. Surprisingly, however, the lack of CD1d did not greatly affect the long-term survival of NKT cells, and they continued to express CD69 and slowly proliferate. This directly contradicts the currently held view that these phenomena are caused by autoreactivity directed against CD1d/TCR-restricted self-Ags. Our findings demonstrate an ongoing role for TCR-mediated signaling throughout NKT cell development, but the characteristic semiactivated basal state of NKT cells is controlled by CD1d-independent factors or is intrinsic to the cells themselves.