Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Comparison of Influenza and SIV Specific CD8 T Cell Responses in Macaques
    Jegaskanda, S ; Reece, JC ; De Rose, R ; Stambas, J ; Sullivan, L ; Brooks, AG ; Kent, SJ ; Sexton, A ; Ambrose, Z (PUBLIC LIBRARY SCIENCE, 2012-03-05)
    Macaques are a potentially useful non-human primate model to compare memory T-cell immunity to acute virus pathogens such as influenza virus and effector T-cell responses to chronic viral pathogens such as SIV. However, immunological reagents to study influenza CD8(+) T-cell responses in the macaque model are limited. We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8(+) T-cells in 39 pigtail macaques expressing the common Mane-A*10(+) (Mane-A01*084) MHC-I allele. To perform comparative studies between influenza and SIV responses a common influenza nucleoprotein-specific CD8(+) T-cell response was mapped to a minimal epitope (termed RA9), MHC-restricted to Mane-A*10 and an MHC tetramer developed to study this response. Influenza-specific memory CD8(+) T-cell response maintained a highly functional profile in terms of multitude of effector molecule expression (CD107a, IFN-γ, TNF-α, MIP-1β and IL-2) and showed high avidity even in the setting of SIV infection. In contrast, within weeks following active SIV infection, SIV-specific CD8(+) effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8(+) T-cells. Further, the influenza specific memory CD8 T-cell response retained stable expression of the exhaustion marker programmed death-marker-1 (PD-1) and co-stimulatory molecule CD28 following infection with SIV. This contrasted with the effector SIV-specific CD8(+) T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28. Our results suggest that strategies to maintain a more functional CD8(+) T-cell response, profile may assist in controlling HIV disease.
  • Item
    No Preview Available
    Cross-Reactive Influenza-Specific Antibody-Dependent Cellular Cytotoxicity Antibodies in the Absence of Neutralizing Antibodies
    Jegaskanda, S ; Job, ER ; Kramski, M ; Laurie, K ; Isitman, G ; de Rose, R ; Winnall, WR ; Stratov, I ; Brooks, AG ; Reading, PC ; Kent, SJ (AMER ASSOC IMMUNOLOGISTS, 2013-02-15)
    A better understanding of immunity to influenza virus is needed to generate cross-protective vaccines. Engagement of Ab-dependent cellular cytotoxicity (ADCC) Abs by NK cells leads to killing of virus-infected cells and secretion of antiviral cytokines and chemokines. ADCC Abs may target more conserved influenza virus Ags compared with neutralizing Abs. There has been minimal interest in influenza-specific ADCC in recent decades. In this study, we developed novel assays to assess the specificity and function of influenza-specific ADCC Abs. We found that healthy influenza-seropositive young adults without detectable neutralizing Abs to the hemagglutinin of the 1968 H3N2 influenza strain (A/Aichi/2/1968) almost always had ADCC Abs that triggered NK cell activation and in vitro elimination of influenza-infected human blood and respiratory epithelial cells. Furthermore, we detected ADCC in the absence of neutralization to both the recent H1N1 pandemic strain (A/California/04/2009) as well as the avian H5N1 influenza hemagglutinin (A/Anhui/01/2005). We conclude that there is a remarkable degree of cross-reactivity of influenza-specific ADCC Abs in seropositive humans. Targeting cross-reactive influenza-specific ADCC epitopes by vaccination could lead to improved influenza vaccines.
  • Item
    No Preview Available
    A Protective Vaccine Delivery System for In Vivo T Cell Stimulation Using Nanoengineered Polymer Hydrogel Capsules
    Sexton, A ; Whitney, PG ; Chong, S-F ; Zelikin, AN ; Johnston, APR ; De Rose, R ; Brooks, AG ; Caruso, F ; Kent, SJ (AMER CHEMICAL SOC, 2009-11)
    Successful delivery of labile vaccine antigens, such as peptides and proteins, to stimulate CD4 and CD8 T cell immunity could improve vaccine strategies against chronic infections such as HIV and Hepatitis C. Layer-by-layer (LbL)-assembled nanoengineered hydrogel capsules represent a novel and promising technology for the protection and delivery of labile vaccine candidates to antigen-presenting cells (APCs). Here we report on the in vitro and in vivo immunostimulatory capabilities of LbL-assembled disulfide cross-linked poly(methacrylic acid) (PMA(SH)) hydrogel capsules as a delivery strategy for protein and peptide vaccines using robust transgenic mice models and ovalbumin (OVA) as a model vaccine. We demonstrate that OVA protein as well as multiple OVA peptides can be successfully encapsulated within nanoengineered PMA(SH) hydrogel capsules. OVA-containing PMA(SH) capsules are internalized by mouse APCs, resulting in presentation of OVA epitopes and subsequent activation of OVA-specific CD4 and CD8 T cells in vitro. OVA-specific CD4 and CD8 T cells are also activated to proliferate in vivo following intravenous vaccination of mice with OVA protein- and OVA peptide-loaded PMA(SH) hydrogel capsules. Furthermore, we show that OVA encapsulated within the PMA(SH) capsules resulted in at least 6-fold greater proliferation of OVA-specific CD8 T cells and 70-fold greater proliferation of OVA-specific CD4 T cells in vivo compared to the equivalent amount of OVA protein administered alone. These results highlight the potential of nanoengineered hydrogel capsules for vaccine delivery.
  • Item
    No Preview Available
    Age-Associated Cross-reactive Antibody-Dependent Cellular Cytotoxicity Toward 2009 Pandemic Influenza A Virus Subtype H1N1
    Jegaskanda, S ; Laurie, KL ; Amarasena, TH ; Winnall, WR ; Kramski, M ; De Rose, R ; Barr, IG ; Brooks, AG ; Reading, PC ; Kent, SJ (OXFORD UNIV PRESS INC, 2013-10-01)
    BACKGROUND: During the 2009 pandemic of influenza A virus subtype H1N1 (A[H1N1]pdm09) infection, older individuals were partially protected from severe disease. It is not known whether preexisting antibodies with effector functions such as antibody-dependent cellular cytotoxicity (ADCC) contributed to the immunity observed. METHODS: We tested serum specimens obtained from 182 individuals aged 1-72 years that were collected either immediately before or after the A(H1N1)pdm09 pandemic for ADCC antibodies to the A(H1N1)pdm09 hemagglutinin (HA) protein. RESULTS: A(H1N1)pdm09 HA-specific ADCC antibodies were detected in almost all individuals aged >45 years (28/31 subjects) before the 2009 A(H1N1) pandemic. Conversely, only approximately half of the individuals aged 1-14 years (11/31) and 15-45 years (17/31) had cross-reactive ADCC antibodies before the 2009 A(H1N1) pandemic. The A(H1N1)pdm09-specific ADCC antibodies were able to efficiently mediate the killing of influenza virus-infected respiratory epithelial cells. Further, subjects >45 years of age had higher ADCC titers to a range of seasonal H1N1 HA proteins, including from the 1918 virus, compared with younger individuals. CONCLUSIONS: ADCC antibodies may have contributed to the protection exhibited in older individuals during the 2009 A(H1N1) pandemic. This work has significant implications for improved vaccination strategies for future influenza pandemics.
  • Item
    Thumbnail Image
    MHC class I allele frequencies in pigtail macaques of diverse origin
    Pratt, BF ; O'Connor, DH ; Lafont, BAP ; Mankowski, JL ; Fernandez, CS ; Triastuti, R ; Brooks, AG ; Kent, SJ ; Smith, MZ (SPRINGER, 2006-12)
    Pigtail macaques (Macaca nemestrina) are an increasingly common primate model for the study of human AIDS. Major Histocompatibility complex (MHC) class I-restricted CD8(+) T cell responses are a critical part of the adaptive immune response to HIV-1 in humans and simian immunodeficiency virus (SIV) in macaques; however, MHC class I alleles have not yet been comprehensively characterized in pigtail macaques. The frequencies of ten previously defined alleles (four Mane-A and six Mane-B) were investigated in detail in 109 pigtail macaques using reference strand-mediated conformational analysis (RSCA). The macaques were derived from three separate breeding colonies in the USA, Indonesia and Australia, and allele frequencies were analysed within and between these groups. Mane-A*10, an allele that restricts the immunodominant SIV Gag epitope KP9, was the most common allele, present in 32.1% of the animals overall, with similar frequencies across the three cohorts. Additionally, RSCA identified a new allele (Mane-A*17) common to three Indonesian pigtail macaques responding to the same Gag CD8(+) T cell epitope. This broad characterization of common MHC class I alleles in more than 100 pigtail macaques further develops this animal model for the study of virus-specific CD8(+) T cell responses.
  • Item
    Thumbnail Image
    Analysis of Pigtail Macaque Major Histocompatibility Complex Class I Molecules Presenting Immunodominant Simian Immunodeficiency Virus Epitopes
    SMITH, MIRANDA ZOE DENHAM ; DALE, CAROLINE JANE HUGHES ; DE ROSE, ROBERT ; STRATOV, IVAN ; FERNANDEZ, CAROLINE SHAMALA ; BROOKS, ANDREW GEOFFREY ; WEINFURTER, JASON ; KREBS, KENDALL ; RIEK, CARA ; WATKINS, DAVID ; O'CONNOR, DAVID ; KENT, STEPHEN JOHN ( 2004)