Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients
    Nguyen, THO ; Koutsakos, M ; van de Sandt, CE ; Crawford, JC ; Loh, L ; Sant, S ; Grzelak, L ; Allen, EK ; Brahm, T ; Clemens, EB ; Auladell, M ; Hensen, L ; Wang, Z ; Nussing, S ; Jia, X ; Gunther, P ; Wheatley, AK ; Kent, SJ ; Aban, M ; Deng, Y-M ; Laurie, KL ; Hurt, AC ; Gras, S ; Rossjohn, J ; Crowe, J ; Xu, J ; Jackson, D ; Brown, LE ; La Gruta, N ; Chen, W ; Doherty, PC ; Turner, SJ ; Kotsimbos, TC ; Thomas, PG ; Cheng, AC ; Kedzierska, K (NATURE PORTFOLIO, 2021-05-11)
    How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/β cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.
  • Item
    Thumbnail Image
    Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+T cell response magnitude
    Quinn, KM ; Kan, W-T ; Watson, KA ; Liddicoat, BJ ; Swan, NG ; McQuilten, H ; Denton, AE ; Li, J ; Chen, W ; Brown, LE ; Jackson, DC ; Reading, PC ; Doherty, PC ; Kedzierska, K ; Kedzierski, L ; Turner, SJ ; La Gruta, NL ; Sun, J (PUBLIC LIBRARY SCIENCE, 2017-09-08)
    TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF.