Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses
    Bird, NL ; Olson, MR ; Hurt, AC ; Oshansky, CM ; Oh, DY ; Reading, PC ; Chua, BY ; Sun, Y ; Tang, L ; Handel, A ; Jackson, DC ; Turner, SJ ; Thomas, PG ; Kedzierska, K ; Manicassamy, B (PUBLIC LIBRARY SCIENCE, 2015-06-18)
    CD8(+) T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8(+) T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8(+) T cell responses and the establishment of immunological CD8(+) T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8(+) T cell responses. Importantly, functional memory CD8(+) T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4(+) T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8(+) T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves.
  • Item
    Thumbnail Image
    Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses
    Auladell, M ; Jia, X ; Hensen, L ; Chua, B ; Fox, A ; Nguyen, THO ; Doherty, PC ; Kedzierska, K (FRONTIERS MEDIA SA, 2019-07-02)
    Persistent and durable immunological memory forms the basis of any successful vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus the key for maintaining protective immunity to seasonal, pandemic and avian influenza viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell precursors encounter their cognate antigen, the linked processes of differentiation (including Ig class switching) and proliferation also give rise to memory B cells, which then can change rapidly to ASC status after subsequent influenza encounters. Given that influenza viruses evolve rapidly as a consequence of antibody-driven mutational change (antigenic drift), the current influenza vaccines need to be reformulated frequently and annual vaccination is recommended. Without that process of regular renewal, they provide little protection against "drifted" (particularly H3N2) variants and are mainly ineffective when a novel pandemic (2009 A/H1N1 "swine" flu) strain suddenly emerges. Such limitation of antibody-mediated protection might be circumvented, at least in part, by adding a novel vaccine component that promotes cross-reactive CD8+ T cells specific for conserved viral peptides, presented by widely distributed HLA types. Such "memory" cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector status. Here, we review how B cells and follicular T cells are elicited following influenza vaccination and how they survive into a long-term memory. We describe how CD8+ CTL memory is established following influenza virus infection, and how a robust CTL recall response can lead to more rapid virus elimination by destroying virus-infected cells, and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving and unpredictable influenza viruses provides a possible mechanism for preventing a disastrous pandemic comparable to the 1918-1919 H1N1 "Spanish flu," which killed more than 50 million people worldwide.
  • Item
    Thumbnail Image
    Establishment of functional influenza virus-specific CDS+ T cell memory pools after intramuscular immunization
    Wang, Z ; Chua, BY ; Ramos, JV ; Parra, SMQ ; Fairmaid, E ; Brown, LE ; Jackson, DC ; Kedzierska, K (ELSEVIER SCI LTD, 2015-09-22)
    The emergence of the avian-origin influenza H7N9 virus and its pandemic potential has highlighted the ever-present need to develop vaccination approaches to induce cross-protective immunity. In this study, we examined the establishment of cross-reactive CD8(+) T cell immunity in mice following immunization with live A/Puerto Rico/8/1934 (PR8; H1N1) influenza virus via two non-productive inoculation routes. We found that immunization via the intramuscular (IM) route established functional influenza-virus specific memory CD8(+) T cell pools capable of cross-reactive recall responses. Epitope-specific primary, memory and recall CD8(+) T-cell responses induced by the IM route, highly relevant to human influenza immunisations, were of comparable magnitude and quality to those elicited by the intraperitoneal (IP) priming, commonly used in mice. Furthermore, IM immunisation resulted in lower lung viral titres following heterologous challenge with A/Aichi/68 (X31; H3N2) compared to the IP route. Examining the ability of DCs from lymphoid organs to present viral antigen revealed that immune induction following IM immunization occurred in draining lymph nodes, while immunization via the IP route resulted in the priming of responses in distal lymphoid organs, indicative of a systemic distribution of antigen. No major differences in the pulmonary cytokine environment of immunized animals following X31 challenge were observed that could account for the improved heterologous protection induced by the IM route. However, while both routes induced similar levels of PR8-specific antibodies, higher levels of cross-reactive antibodies against X31 were induced following IM inoculation. Our data demonstrate how non-replicative routes of infection can induce efficient cross-reactive CD8(+) T cell responses and strong strain-specific antibody responses, with the additional benefit from IM priming of enhanced heterosubtypic antibody production.
  • Item
    Thumbnail Image
    Establishment of memory CD8+ T cells with live attenuated influenza virus across different vaccination doses
    Wang, Z ; Kedzierski, L ; Nuessing, S ; Chua, BYL ; Quiones-Parra, SM ; Huber, VC ; Jackson, DC ; Thomas, PG ; Kedzierska, K (MICROBIOLOGY SOC, 2016-12)
    FluMist has been used in children and adults for more than 10 years. As pre-existing CD8+ T cell memory pools can provide heterologous immunity against distinct influenza viruses, it is important to understand influenza-specific CD8+ T cell responses elicited by different live attenuated influenza virus (LAIV) regimens. In this study, we immunized mice intranasally with two different doses of live-attenuated PR8 virus (PR8 ts, H1N1), low and high, and then assessed protective efficacy by challenging animals with heterosubtypic X31-H3N2 virus at 6 weeks post-vaccination. Different LAIV doses elicited influenza-specific CD8+ T cell responses in lungs and spleen, but unexpectedly not in bronchoalveolar lavage. Interestingly, the immunodominance hierarchy at the acute phase after immunization varied depending on the LAIV dose; however, these differences disappeared at 6 weeks post-vaccination, resulting in generation of comparable CD8+ T cell memory pools. After vaccination with either dose, sufficient numbers of specific CD8+ T cells were generated for recall and protection of mice against heterosubtypic H1N1→H3N2 challenge. As a result, immunized mice displayed reduced weight loss, diminished inflammatory responses and lower viral titres in lungs, when compared to unvaccinated animals. Interestingly, the higher dose led to enhanced viral clearance on day 5 post-challenge, though this was not associated with increased CD8+ T cell responses, but with higher levels of non-neutralizing antibodies against the priming virus. Our study suggests that, while different LAIV doses result in distinct immune profiles, even a low dose produces sufficient protective CD8+ T cell memory against challenge infection, though the high dose results in more rapid viral clearance and reduced inflammation.