Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    Thumbnail Image
    Defining the balance between optimal immunity and immunopathology in influenza virus infection
    Nguyen, THO ; Rowntree, LC ; Chua, BY ; Thwaites, RS ; Kedzierska, K (NATURE PORTFOLIO, 2024-05-02)
    Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
  • Item
    Thumbnail Image
    Immunogenicity and protective efficacy of a co-formulated two-in-one inactivated whole virus particle COVID-19/influenza vaccine.
    Handabile, C ; Ohno, M ; Sekiya, T ; Nomura, N ; Kawakita, T ; Kawahara, M ; Endo, M ; Nishimura, T ; Okumura, M ; Toba, S ; Sasaki, M ; Orba, Y ; Chua, BY ; Rowntree, LC ; Nguyen, THO ; Shingai, M ; Sato, A ; Sawa, H ; Ogasawara, K ; Kedzierska, K ; Kida, H (Springer Science and Business Media LLC, 2024-02-20)
    Due to the synchronous circulation of seasonal influenza viruses and severe acute respiratory coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19), there is need for routine vaccination for both COVID-19 and influenza to reduce disease severity. Here, we prepared individual WPVs composed of formalin-inactivated SARS-CoV-2 WK 521 (Ancestral strain; Co WPV) or influenza virus [A/California/07/2009 (X-179A) (H1N1) pdm; Flu WPV] to produce a two-in-one Co/Flu WPV. Serum analysis from vaccinated mice revealed that a single dose of Co/Flu WPV induced antigen-specific neutralizing antibodies against both viruses, similar to those induced by either type of WPV alone. Following infection with either virus, mice vaccinated with Co/Flu WPV showed no weight loss, reduced pneumonia and viral titers in the lung, and lower gene expression of proinflammatory cytokines, as observed with individual WPV-vaccinated. Furthermore, a pentavalent vaccine (Co/qFlu WPV) comprising of Co WPV and quadrivalent influenza vaccine (qFlu WPV) was immunogenic and protected animals from severe COVID-19. These results suggest that a single dose of the two-in-one WPV provides efficient protection against SARS-CoV-2 and influenza virus infections with no evidence of vaccine interference in mice. We propose that concomitant vaccination with the two-in-one WPV can be useful for controlling both diseases.
  • Item
    Thumbnail Image
    Evolution of Humoral and Cellular Immunity Post-Breakthrough Coronavirus Disease 2019 in Vaccinated Patients With Hematologic Malignancy Receiving Tixagevimab-Cilgavimab
    Hall, VG ; Nguyen, THO ; Allen, LF ; Rowntree, LC ; Kedzierski, L ; Chua, BY ; Lim, C ; Saunders, NR ; Klimevski, E ; Tennakoon, GS ; Seymour, JF ; Wadhwa, V ; Cain, N ; Vo, KL ; Nicholson, S ; Karapanagiotidis, T ; Williamson, DA ; Thursky, KA ; Spelman, T ; Yong, MK ; Slavin, MA ; Kedzierska, K ; Teh, BW (OXFORD UNIV PRESS INC, 2023-11-01)
    BACKGROUND: In-depth immunogenicity studies of tixagevimab-cilgavimab (T-C) are lacking, including following breakthrough coronavirus disease 2019 (COVID-19) in vaccinated patients with hematologic malignancy (HM) receiving T-C as pre-exposure prophylaxis. METHODS: We performed a prospective, observational cohort study and detailed immunological analyses of 93 patients with HM who received T-C from May 2022, with and without breakthrough infection, during a follow-up period of 6 months and dominant Omicron BA.5 variant. RESULTS: In 93 patients who received T-C, there was an increase in Omicron BA.4/5 receptor-binding domain (RBD) immunoglobulin G (IgG) antibody titers that persisted for 6 months and was equivalent to 3-dose-vaccinated uninfected healthy controls at 1 month postinjection. Omicron BA.4/5 neutralizing antibody was lower in patients receiving B-cell-depleting therapy within 12 months despite receipt of T-C. COVID-19 vaccination during T-C treatment did not incrementally improve RBD or neutralizing antibody levels. In 16 patients with predominantly mild breakthrough infection, no change in serum neutralization of Omicron BA.4/5 postinfection was detected. Activation-induced marker assay revealed an increase in CD4+ (but not CD8+) T cells post infection, comparable to previously infected healthy controls. CONCLUSIONS: Our study provides proof-of-principle for a pre-exposure prophylaxis strategy and highlights the importance of humoral and cellular immunity post-breakthrough COVID-19 in vaccinated patients with HM.
  • Item
    No Preview Available
    Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites
    Lansink, LIM ; Skinner, OP ; Engel, JA ; Lee, HJ ; Soon, MSF ; Williams, CG ; SheelaNair, A ; Pernold, CPS ; Laohamonthonkul, P ; Akter, J ; Stoll, T ; Hill, MM ; Talman, AM ; Russell, A ; Lawniczak, M ; Jia, X ; Chua, B ; Anderson, D ; Creek, DJ ; Davenport, MP ; Khoury, DS ; Haque, A ; Sibley, LD ; Goldberg, DE (AMER SOC MICROBIOLOGY, 2023-08-31)
    Maturation rates of malaria parasites within red blood cells (RBCs) can be influenced by host nutrient status and circadian rhythm; whether host inflammatory responses can also influence maturation remains less clear. Here, we observed that systemic host inflammation induced in mice by an innate immune stimulus, lipopolysaccharide (LPS), or by ongoing acute Plasmodium infection, slowed the progression of a single cohort of parasites from one generation of RBC to the next. Importantly, plasma from LPS-conditioned or acutely infected mice directly inhibited parasite maturation during in vitro culture, which was not rescued by supplementation, suggesting the emergence of inhibitory factors in plasma. Metabolomic assessments confirmed substantial alterations to the plasma of LPS-conditioned and acutely infected mice, and identified a small number of candidate inhibitory metabolites. Finally, we confirmed rapid parasite responses to systemic host inflammation in vivo using parasite scRNA-seq, noting broad impairment in transcriptional activity and translational capacity specifically in trophozoites but not rings or schizonts. Thus, we provide evidence that systemic host inflammation rapidly triggered transcriptional alterations in circulating blood-stage Plasmodium trophozoites and predict candidate inhibitory metabolites in the plasma that may impair parasite maturation in vivo. IMPORTANCE Malaria parasites cyclically invade, multiply, and burst out of red blood cells. We found that a strong inflammatory response can cause changes to the composition of host plasma, which directly slows down parasite maturation. Thus, our work highlights a new mechanism that limits malaria parasite growth in the bloodstream.
  • Item
    No Preview Available
    Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19
    Zhang, W ; Clemens, EB ; Kedzierski, L ; Chua, BY ; Mayo, M ; Lonzi, C ; Hinchcliff, A ; Rigas, V ; Middleton, BF ; Binks, P ; Rowntree, LC ; Allen, LF ; Tan, H-X ; Petersen, J ; Chaurasia, P ; Krammer, F ; Wheatley, AK ; Kent, SJ ; Rossjohn, J ; Miller, A ; Lynar, S ; Nelson, J ; Nguyen, THO ; Davies, J ; Kedzierska, K (WILEY, 2023-11)
    Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
  • Item
    No Preview Available
    Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities
    Zhang, W ; Kedzierski, L ; Chua, BY ; Mayo, M ; Lonzi, C ; Rigas, V ; Middleton, BF ; McQuilten, HA ; Rowntree, LC ; Allen, LF ; Purcell, RA ; Tan, H-X ; Petersen, J ; Chaurasia, P ; Mordant, F ; Pogorelyy, MV ; Minervina, AA ; Crawford, JC ; Perkins, GB ; Zhang, E ; Gras, S ; Clemens, EB ; Juno, JA ; Audsley, J ; Khoury, DS ; Holmes, NE ; Thevarajan, I ; Subbarao, K ; Krammer, F ; Cheng, AC ; Davenport, MP ; Grubor-Bauk, B ; Coates, PT ; Christensen, B ; Thomas, PG ; Wheatley, AK ; Kent, SJ ; Rossjohn, J ; Chung, AW ; Boffa, J ; Miller, A ; Lynar, S ; Nelson, J ; Nguyen, THO ; Davies, J ; Kedzierska, K (NATURE PORTFOLIO, 2023-06)
    High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
  • Item
    No Preview Available
    Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and ?? T cell perturbations
    Habel, JR ; Chua, BY ; Kedzierski, L ; Selva, KJ ; Damelang, T ; Haycroft, ER ; Nguyen, THO ; Koay, H-F ; Nicholson, S ; McQuilten, HA ; Jia, X ; Allen, LF ; Hensen, L ; Zhang, W ; Sandt, CEVD ; Neil, JA ; Pragastis, K ; Lau, JSY ; Jumarang, J ; Allen, EK ; Amanant, F ; Krammer, F ; Wragg, KM ; Juno, JA ; Wheatley, AK ; Tan, H-X ; Pell, G ; Walker, S ; Audsley, J ; Reynaldi, A ; Thevarajan, I ; Denholm, JT ; Subbarao, K ; Davenport, MP ; Hogarth, PM ; Godfrey, DI ; Cheng, AC ; Tong, SYC ; Bond, K ; Williamson, DA ; McMahon, JH ; Thomas, PG ; Pannaraj, PS ; James, F ; Holmes, NE ; Smibert, OC ; Trubiano, JA ; Gordon, CL ; Chung, AW ; Whitehead, CL ; Kent, SJ ; Lappas, M ; Rowntree, LC ; Kedzierska, K (AMER SOC CLINICAL INVESTIGATION INC, 2023-03-22)
    Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
  • Item
    No Preview Available
    Robust SARS-CoV-2 T cell responses with common TCRab motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells
    Nguyen, THO ; Rowntree, LC ; Allen, LF ; Chua, BY ; Kedzierski, L ; Lim, C ; Lasica, M ; Tennakoon, GS ; Saunders, NR ; Crane, M ; Chee, L ; Seymour, JF ; Anderson, MA ; Whitechurch, A ; Clemens, EB ; Zhang, W ; Chang, SY ; Habel, JR ; Jia, X ; McQuilten, HA ; Minervina, AA ; Pogorelyy, MV ; Chaurasia, P ; Petersen, J ; Menon, T ; Hensen, L ; Neil, JA ; Mordant, FL ; Tan, H-X ; Cabug, AF ; Wheatley, AK ; Kent, SJ ; Subbarao, K ; Karapanagiotidis, T ; Huang, H ; Vo, LK ; Cain, NL ; Nicholson, S ; Krammer, F ; Gibney, G ; James, F ; Trevillyan, JM ; Trubiano, JA ; Mitchell, J ; Christensen, B ; Bond, KA ; Williamson, DA ; Rossjohn, J ; Crawford, JC ; Thomas, PG ; Thursky, KA ; Slavin, MA ; Tam, CS ; Teh, BW ; Kedzierska, K (CELL PRESS, 2023-04-18)
    Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
  • Item
    Thumbnail Image
    Prospective comprehensive profiling of immune responses to COVID-19 vaccination in patients on zanubrutinib therapy.
    Nguyen, THO ; Lim, C ; Lasica, M ; Whitechurch, A ; Tennakoon, S ; Saunders, NR ; Allen, LF ; Rowntree, LC ; Chua, BY ; Kedzierski, L ; Tan, H-X ; Wheatley, AK ; Kent, SJ ; Karapanagiotidis, T ; Nicholson, S ; Williamson, DA ; Slavin, MA ; Tam, CS ; Kedzierska, K ; Teh, BW (Wiley, 2023-02)
    Zanubrutinib-treated and treatment-naïve patients with chronic lymphocytic leukaemia (CLL) or Waldenstrom's macroglobulinaemia were recruited in this prospective study to comprehensively profile humoral and cellular immune responses to COVID-19 vaccination. Overall, 45 patients (median 72 years old) were recruited; the majority were male (71%), had CLL (76%) and were on zanubrutinib (78%). Seroconversion rates were 65% and 77% following two and three doses, respectively. CD4+ and CD8+ T-cell response rates increased with third dose. In zanubrutinib-treated patients, 86% developed either a humoral or cellular response. Patients on zanubrutinib developed substantial immune responses following two COVID-19 vaccine doses, which further improved following a third dose.
  • Item
    Thumbnail Image
    Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques
    Chua, BY ; Sekiya, T ; Koutsakos, M ; Nomura, N ; Rowntree, LC ; Nguyen, THO ; McQuilten, HA ; Ohno, M ; Ohara, Y ; Nishimura, T ; Endo, M ; Itoh, Y ; Habel, JR ; Selva, KJ ; Wheatley, AK ; Wines, BD ; Hogarth, PM ; Kent, SJ ; Chung, AW ; Jackson, DC ; Brown, LE ; Shingai, M ; Kedzierska, K ; Kida, H ; Klein, SL (PUBLIC LIBRARY SCIENCE, 2022-10)
    Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.