Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    No Preview Available
    Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations
    Purcell, RA ; Theisen, RM ; Arnold, KB ; Chung, AWW ; Selva, KJ (FRONTIERS MEDIA SA, 2023-06-27)
    Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
  • Item
    No Preview Available
    Preexisting immunity restricts mucosal antibody recognition of SARS-CoV-2 and Fc profiles during breakthrough infections
    Selva, KJ ; Ramanathan, P ; Haycroft, ER ; Reynaldi, A ; Cromer, D ; Tan, CW ; Wang, L-F ; Wines, BD ; Hogarth, PM ; Downie, LE ; Davis, SK ; Purcell, RA ; Kent, HE ; Juno, JA ; Wheatley, AK ; Davenport, MP ; Kent, SJ ; Chung, AW (American Society for Clinical investigation, 2023-09-22)
    Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19-recovered vaccinees (recovered, vaccinated), and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19-recovered vaccinees displayed improved antibody-neutralizing activity, Fcγ receptor (FcγR) engagement, and IgA levels compared with COVID-19-uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma; however, these rises only negatively correlated with FcγR engagement in plasma. IgG and FcγR engagement, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased preexisting vaccine-induced immunity against the ancestral strain. Salivary antibodies delayed initiation following breakthrough COVID-19 infection, especially Omicron BA.2, but rose rapidly thereafter. Importantly, salivary antibody FcγR engagements were enhanced following breakthrough infections. Our data highlight how preexisting immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.
  • Item
    No Preview Available
    Mucosal antibody responses following Vaxzevria vaccination
    Selva, KJ ; Ramanathan, P ; Haycroft, ER ; Tan, CW ; Wang, L-F ; Downie, LE ; Davis, SK ; Purcell, RA ; Kent, HE ; Juno, JA ; Wheatley, AK ; Davenport, MP ; Kent, SJ ; Chung, AW (WILEY, 2023-11)
    Mucosal antibodies play a key role in protection against breakthrough COVID-19 infections and emerging viral variants. Intramuscular adenovirus-based vaccination (Vaxzevria) only weakly induces nasal IgG and IgA responses, unless vaccinees have been previously infected. However, little is known about how Vaxzevria vaccination impacts the ability of mucosal antibodies to induce Fc responses, particularly against SARS-CoV-2 variants of concern (VoCs). Here, we profiled paired mucosal (saliva, tears) and plasma antibodies from COVID-19 vaccinated only vaccinees (uninfected, vaccinated) and COVID-19 recovered vaccinees (COVID-19 recovered, vaccinated) who both received Vaxzevria vaccines. SARS-CoV-2 ancestral-specific IgG antibodies capable of engaging FcγR3a were significantly higher in the mucosal samples of COVID-19 recovered Vaxzevria vaccinees in comparison with vaccinated only vaccinees. However, when IgG and FcγR3a engaging antibodies were tested against a panel of SARS-CoV-2 VoCs, the responses were ancestral-centric with weaker recognition of Omicron strains observed. In contrast, salivary IgA, but not plasma IgA, from Vaxzevria vaccinees displayed broad cross-reactivity across all SARS-CoV-2 VoCs tested. Our data highlight that while intramuscular Vaxzevria vaccination can enhance mucosal antibodies responses in COVID-19 recovered vaccinees, restrictions by ancestral-centric bias may have implications for COVID-19 protection. However, highly cross-reactive mucosal IgA could be key in addressing these gaps in mucosal immunity and may be an important focus of future SARS-CoV-2 vaccine development.
  • Item
    No Preview Available
    Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants
    Haycroft, ER ; Davis, SK ; Ramanathan, P ; Lopez, E ; Purcell, RA ; Tan, LL ; Pymm, P ; Wines, BD ; Hogarth, PM ; Wheatley, AK ; Juno, JA ; Redmond, SJ ; Gherardin, NA ; Godfrey, DI ; Tham, W-H ; Selva, KJ ; Kent, SJ ; Chung, AW (SPRINGER, 2023-08)
    Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.
  • Item
    No Preview Available
    Insights into how SARS-CoV2 infection induces cytokine storms
    Selva, KJ ; Chung, AW (CELL PRESS, 2022-06)
    Severe coronavirus disease 2019 (COVID-19) has been associated with cytokine storms and hyperinflammation. In a recent study, Junqueira et al. provide evidence that antibody-mediated uptake of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus by monocytes and macrophages may contribute to this inflammation by activating inflammasomes which trigger pyroptosis.
  • Item
    No Preview Available
    Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and ?? T cell perturbations
    Habel, JR ; Chua, BY ; Kedzierski, L ; Selva, KJ ; Damelang, T ; Haycroft, ER ; Nguyen, THO ; Koay, H-F ; Nicholson, S ; McQuilten, HA ; Jia, X ; Allen, LF ; Hensen, L ; Zhang, W ; Sandt, CEVD ; Neil, JA ; Pragastis, K ; Lau, JSY ; Jumarang, J ; Allen, EK ; Amanant, F ; Krammer, F ; Wragg, KM ; Juno, JA ; Wheatley, AK ; Tan, H-X ; Pell, G ; Walker, S ; Audsley, J ; Reynaldi, A ; Thevarajan, I ; Denholm, JT ; Subbarao, K ; Davenport, MP ; Hogarth, PM ; Godfrey, DI ; Cheng, AC ; Tong, SYC ; Bond, K ; Williamson, DA ; McMahon, JH ; Thomas, PG ; Pannaraj, PS ; James, F ; Holmes, NE ; Smibert, OC ; Trubiano, JA ; Gordon, CL ; Chung, AW ; Whitehead, CL ; Kent, SJ ; Lappas, M ; Rowntree, LC ; Kedzierska, K (AMER SOC CLINICAL INVESTIGATION INC, 2023-03-22)
    Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
  • Item
    Thumbnail Image
    Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques
    Chua, BY ; Sekiya, T ; Koutsakos, M ; Nomura, N ; Rowntree, LC ; Nguyen, THO ; McQuilten, HA ; Ohno, M ; Ohara, Y ; Nishimura, T ; Endo, M ; Itoh, Y ; Habel, JR ; Selva, KJ ; Wheatley, AK ; Wines, BD ; Hogarth, PM ; Kent, SJ ; Chung, AW ; Jackson, DC ; Brown, LE ; Shingai, M ; Kedzierska, K ; Kida, H ; Klein, SL (PUBLIC LIBRARY SCIENCE, 2022-10)
    Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.
  • Item
    Thumbnail Image
    Heterologous SARS-CoV-2 IgA neutralising antibody responses in convalescent plasma
    Davis, SK ; Selva, KJ ; Lopez, E ; Haycroft, ER ; Lee, WS ; Wheatley, AK ; Juno, JA ; Adair, A ; Pymm, P ; Redmond, SJ ; Gherardin, NA ; Godfrey, D ; Tham, W-H ; Kent, SJ ; Chung, AW (WILEY, 2022)
    OBJECTIVES: Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. METHODS: Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. RESULTS: Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. CONCLUSION: Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.
  • Item
    Thumbnail Image
    Virology and immune dynamics reveal high household transmission of ancestral SARS-CoV-2 strain
    Tosif, S ; Haycroft, ER ; Sarkar, S ; Toh, ZQ ; Lien, AHD ; Donato, CM ; Selva, KJ ; Hoq, M ; Overmars, I ; Nguyen, J ; Lee, L-Y ; Clifford, V ; Daley, A ; Mordant, FL ; McVernon, J ; Mulholland, K ; Marcato, AJ ; Smith, MZ ; Curtis, N ; McNab, S ; Saffery, R ; Kedzierska, K ; Subarrao, K ; Burgner, D ; Steer, A ; Bines, JE ; Sutton, P ; Licciardi, P ; Chung, AW ; Neeland, MR ; Crawford, NW (WILEY, 2022-07)
    BACKGROUND: Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS: Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS: The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION: Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.
  • Item
    Thumbnail Image
    Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine
    Ju, Y ; Lee, WS ; Pilkington, EH ; Kelly, HG ; Li, S ; Selva, KJ ; Wragg, KM ; Subbarao, K ; Nguyen, THO ; Rowntree, LC ; Allen, LF ; Bond, K ; Williamson, DA ; Truong, NP ; Plebanski, M ; Kedzierska, K ; Mahanty, S ; Chung, AW ; Caruso, F ; Wheatley, AK ; Juno, JA ; Kent, SJ (AMER CHEMICAL SOC, 2022-08-23)
    Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.