Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain
    Wheatley, AK ; Pymm, P ; Esterbauer, R ; Dietrich, MH ; Lee, WS ; Drew, D ; Kelly, HG ; Chan, L-J ; Mordant, FL ; Black, KA ; Adair, A ; Tan, H-X ; Juno, JA ; Wragg, KM ; Amarasena, T ; Lopez, E ; Selva, KJ ; Haycroft, ER ; Cooney, JP ; Venugopal, H ; Tan, LL ; Neill, MTO ; Allison, CC ; Cromer, D ; Davenport, MP ; Bowen, RA ; Chung, AW ; Pellegrini, M ; Liddament, MT ; Glukhova, A ; Subbarao, K ; Kent, SJ ; Tham, W-H (CELL PRESS, 2021-10-12)
    Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.
  • Item
    Thumbnail Image
    Integrated immune networks in SARS-CoV-2 infected pregnant women reveal differential NK cell and unconventional T cell activation
    Kedzierska, K ; Habel, J ; Chua, B ; Kedzierski, L ; Selva, K ; Damelang, T ; Haycroft, E ; Nguyen, T ; Koay, H-F ; Nicholson, S ; McQuilten, H ; Jia, X ; Allen, L ; Hensen, L ; Zhang, W ; de Sandt, CV ; Neil, J ; Amanat, F ; Krammer, F ; Wragg, K ; Juno, J ; Wheatley, A ; Tan, H-X ; Pell, G ; Audsley, J ; Thevarajan, I ; Denholm, J ; Subbarao, K ; Godfrey, D ; Cheng, A ; Tong, S ; Bond, K ; Williamson, D ; James, F ; Holmes, N ; Smibert, O ; Trubiona, J ; Gordon, C ; Chung, A ; Whitehead, C ; Kent, S ; Lappas, M ; Rowntree, L ( 2021)
    Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4 + and CD8 + T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.
  • Item
    Thumbnail Image
    Robust and prototypical immune responses toward influenza vaccines in the high-risk group of Indigenous Australians
    Hensen, L ; Nguyen, THO ; Rowntree, LC ; Damelang, T ; Koutsakos, M ; Aban, M ; Hurt, A ; Harland, KL ; Auladell, M ; van de Sandt, CE ; Everitt, A ; Blacker, C ; Oyong, DA ; Loughland, JR ; Webb, JR ; Wines, BD ; Hogarth, PM ; Flanagan, KL ; Plebanski, M ; Wheatley, A ; Chung, AW ; Kent, SJ ; Miller, A ; Clemens, EB ; Doherty, PC ; Nelson, J ; Davies, J ; Tong, SYC ; Kedzierska, K (NATL ACAD SCIENCES, 2021-10-12)
    Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.
  • Item
    Thumbnail Image
    Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay
    Lopez, E ; Haycroft, ER ; Adair, A ; Mordant, FL ; O'Neill, MT ; Pymm, P ; Redmond, SJ ; Lee, WS ; Gherardin, NA ; Wheatley, AK ; Juno, JA ; Selva, KJ ; Davis, SK ; Grimley, SL ; Harty, L ; Purcell, DFJ ; Subbarao, K ; Godfrey, D ; Kent, SJ ; Tham, W-H ; Chung, AW (AMER SOC CLINICAL INVESTIGATION INC, 2021-08-23)
    The SARS-CoV-2 receptor binding domain (RBD) is both the principal target of neutralizing antibodies and one of the most rapidly evolving domains, which can result in the emergence of immune escape mutations, limiting the effectiveness of vaccines and antibody therapeutics. To facilitate surveillance, we developed a rapid, high-throughput, multiplex assay able to assess the inhibitory response of antibodies to 24 RBD natural variants simultaneously. We demonstrate how this assay can be implemented as a rapid surrogate assay for functional cell-based serological methods to measure the SARS-CoV-2 neutralizing capacity of antibodies at the angiotensin-converting enzyme 2-RBD (ACE2-RBD) interface. We describe the enhanced affinity of RBD variants N439K, S477N, Q493L, S494P, and N501Y to the ACE2 receptor and demonstrate the ability of this assay to bridge a major gap for SARS-CoV-2 research, informing selection of complementary monoclonal antibody candidates and the rapid identification of immune escape to emerging RBD variants following vaccination or natural infection.
  • Item
    Thumbnail Image
    Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 RBD variants with a novel competitive multiplex assay
    Lopez, E ; Haycroft, E ; Adair, A ; Mordant, F ; O’Neill, M ; Pymm, P ; Redmond, S ; Gherardin, N ; Wheatley, A ; Juno, J ; Selva, K ; Davis, S ; Harty, L ; Purcell, DFJ ; Subbarao, K ; Godfrey, D ; Kent, S ; Tham, W-H ; Chung, A ( 2021)

    ABSTRACT

    The SARS-CoV-2 Receptor Binding Domain (RBD) is both the principal target of neutralizing antibodies, and one of the most rapidly evolving domains, which can result in the emergence of immune escape mutations limiting the effectiveness of vaccines and antibody therapeutics. To facilitate surveillance, we developed a rapid, high-throughput, multiplex assay able to assess the inhibitory response of antibodies to 24 RBD natural variants simultaneously. We demonstrate that immune escape can occur through two mechanisms, antibodies that fail to recognize mutations, along with antibodies that have reduced inhibitory capacity due to enhanced variant RBD-ACE2 affinity. A competitive approach where antibodies simultaneously compete with ACE2 for binding to the RBD may therefore more accurately reflect the physiological dynamics of infection. We describe the enhanced affinity of RBD variants N439K, S477N, Q493L, S494P and N501Y to the ACE2 receptor, and demonstrate the ability of this assay to bridge a major gap for SARS-CoV-2 research; informing selection of complementary monoclonal antibody candidates and the rapid identification of immune escape to emerging RBD variants following vaccination or natural infection.
  • Item
    Thumbnail Image
    Decay of Fc-dependent antibody functions after mild to moderate COVID-19
    Lee, WS ; Selva, KJ ; Davis, SK ; Wines, BD ; Reynaldi, A ; Esterbauer, R ; Kelly, HG ; Haycroft, ER ; Tan, H-X ; Juno, JA ; Wheatley, AK ; Hogarth, PM ; Cromer, D ; Davenport, MP ; Chung, AW ; Kent, SJ (CELL PRESS, 2021-06-15)
    The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.
  • Item
    Thumbnail Image
    Decay of Fc-dependent antibody functions after mild to moderate COVID-19
    Lee, WS ; Selva, KJ ; Davis, S ; Wines, B ; Reynaldi, A ; Esterbauer, R ; Kelly, H ; Haycroft, E ; Tan, H-X ; Juno, J ; Wheatley, A ; Hogarth, M ; Cromer, D ; Davenport, M ; Chung, A ; Kent, S ( 2020)
    The capacity of antibodies to engage with innate and adaptive immune cells via the Fc region is important in preventing and controlling many infectious diseases, and is likely critical in SARS-CoV-2 infection. The evolution of such antibodies during convalescence from COVID-19 is largely unknown. We developed novel assays to measure Fc-dependent antibody functions against SARS-CoV-2 spike (S)-expressing cells in serial samples from a cohort of 53 subjects primarily with mild-moderate COVID-19, out to a maximum of 149 days post-infection. We found that S-specific antibodies capable of engaging dimeric FcγRIIa and FcγRIIIa decayed linearly over time. S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declined linearly as well, in line with the decay of S-specific IgG. Although there was significant decay in S-specific plasma ADCC and ADP activity, they remained readily detectable by all assays in 94% of our cohort at the last timepoint studied, in contrast with neutralisation activity which was only detectable in 70% of our cohort by the last timepoint. Our results suggest that Fc effector functions such as ADCC and ADP could contribute to the durability of SARS-CoV-2 immunity, particularly late in convalescence when neutralising antibodies have waned. Understanding the protective potential of antibody Fc effector functions is critical for defining the durability of immunity generated by infection or vaccination.
  • Item
    Thumbnail Image
    Distinct systems serology features in children, elderly and COVID patients
    Selva, K ; van de Sandt, C ; Lemke, M ; Lee, C ; Shoffner, S ; Chua, B ; Nguyen, THO ; Rowntree, L ; Hensen, L ; Koutsakos, M ; Wong, CY ; Jackson, D ; Flanagan, K ; Crowe, J ; Cheng, A ; Doolan, D ; Amanat, F ; Krammer, F ; Chappell, K ; Modhiran, N ; Watterson, D ; Young, P ; Wines, B ; Hogarth, M ; Esterbauer, R ; Kelly, H ; Tan, H-X ; Juno, J ; Wheatley, A ; Kent, S ; Arnold, K ; Kedzierska, K ; Chung, A ( 2020)
    SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fcγ receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fcγ receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
  • Item
    Thumbnail Image
    Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice
    Pymm, P ; Adair, A ; Chan, L-J ; Cooney, JP ; Mordant, FL ; Allison, CC ; Lopez, E ; Haycroft, ER ; O'Neill, MT ; Tan, LL ; Dietrich, MH ; Drew, D ; Doerflinger, M ; Dengler, MA ; Scott, NE ; Wheatley, AK ; Gherardin, NA ; Venugopal, H ; Cromer, D ; Davenport, MP ; Pickering, R ; Godfrey, D ; Purcell, DFJ ; Kent, SJ ; Chung, AW ; Subbarao, K ; Pellegrini, M ; Glukhova, A ; Tham, W-H (NATL ACAD SCIENCES, 2021-05-11)
    Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.
  • Item
    Thumbnail Image
    Systems serology detects functionally distinct coronavirus antibody features in children and elderly
    Selva, KJ ; van de Sandt, CE ; Lemke, MM ; Lee, CY ; Shoffner, SK ; Chua, BY ; Davis, SK ; Nguyen, THO ; Rowntree, LC ; Hensen, L ; Koutsakos, M ; Wong, CY ; Mordant, F ; Jackson, DC ; Flanagan, KL ; Crowe, J ; Tosif, S ; Neeland, MR ; Sutton, P ; Licciardi, P ; Crawford, NW ; Cheng, AC ; Doolan, DL ; Amanat, F ; Krammer, F ; Chappell, K ; Modhiran, N ; Watterson, D ; Young, P ; Lee, WS ; Wines, BD ; Hogarth, PM ; Esterbauer, R ; Kelly, HG ; Tan, H-X ; Juno, JA ; Wheatley, AK ; Kent, SJ ; Arnold, KB ; Kedzierska, K ; Chung, AW (NATURE PORTFOLIO, 2021-04-01)
    The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.