Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Divergent SATB1 expression across human life span and tissue compartments
    Nussing, S ; Koay, H-F ; Sant, S ; Loudovaris, T ; Mannering, SI ; Lappas, M ; d'Udekem, Y ; Konstantinov, IE ; Berzins, SP ; Rimmelzwaan, GF ; Turner, SJ ; Clemens, EB ; Godfrey, DI ; Thi, HON ; Kedzierska, K (WILEY, 2019-05)
    Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.
  • Item
    Thumbnail Image
    Challenging immunodominance of influenza-specific CD8+ T cell responses restricted by the risk-associated HLA-A*68:01 allomorph
    van de Sandt, CE ; Clemens, EB ; Grant, EJ ; Rowntree, LC ; Sant, S ; Halim, H ; Crowe, J ; Cheng, AC ; Kotsimbos, TC ; Richards, M ; Miller, A ; Tong, SYC ; Rossjohn, J ; Nguyen, THO ; Gras, S ; Chen, W ; Kedzierska, K (NATURE PORTFOLIO, 2019-12-06)
    Although influenza viruses lead to severe illness in high-risk populations, host genetic factors associated with severe disease are largely unknown. As the HLA-A*68:01 allele can be linked to severe pandemic 2009-H1N1 disease, we investigate a potential impairment of HLA-A*68:01-restricted CD8+ T cells to mount robust responses. We elucidate the HLA-A*68:01+CD8+ T cell response directed toward an extended influenza-derived nucleoprotein (NP) peptide and show that only ~35% individuals have immunodominant A68/NP145+CD8+ T cell responses. Dissecting A68/NP145+CD8+ T cells in low vs. medium/high responders reveals that high responding donors have A68/NP145+CD8+ memory T cells with clonally expanded TCRαβs, while low-responders display A68/NP145+CD8+ T cells with predominantly naïve phenotypes and non-expanded TCRαβs. Single-cell index sorting and TCRαβ analyses link expansion of A68/NP145+CD8+ T cells to their memory potential. Our study demonstrates the immunodominance potential of influenza-specific CD8+ T cells presented by a risk HLA-A*68:01 molecule and advocates for priming CD8+ T cell compartments in HLA-A*68:01-expressing individuals for establishment of pre-existing protective memory T cell pools.
  • Item
    Thumbnail Image
    Understanding CD8+ T-cell responses toward the native and alternate HLA-A*02:01-restricted WT1 epitope
    Nguyen, THO ; Tan, ACL ; Xiang, SD ; Goubier, A ; Harland, KL ; Clemens, EB ; Plebanski, M ; Kedzierska, K (WILEY, 2017-03-17)
    The Wilms' tumor 1 (WT1) antigen is expressed in solid and hematological malignancies, but not healthy tissues, making it a promising target for cancer immunotherapies. Immunodominant WT1 epitopes, the native HLA-A2/WT1126-134 (RMFPNAPYL) (HLA-A2/RMFPNAPYL epitope (WT1A)) and its modified variant YMFPNAPYL (HLA-A2/YMFPNAPYL epitope (WT1B)), can induce WT1-specific CD8+ T cells, although WT1B is more stably bound to HLA-A*02:01. Here, to further determine the benefits of those two targets, we assessed the naive precursor frequencies; immunogenicity and cross-reactivity of CD8+ T cells directed toward these two WT1 epitopes. Ex vivo naive WT1A- and WT1B-specific CD8+ T cells were detected in healthy HLA-A*02:01+ individuals with comparable precursor frequencies (1 in 105-106) to other naive CD8+ T-cell pools (for example, A2/HIV-Gag77-85), but as expected, ~100 × lower than those found in memory populations (influenza, A2/M158-66; EBV, A2/BMLF1280-288). Importantly, only WT1A-specific naive precursors were detected in HLA-A2.1 mice. To further assess the immunogenicity and recruitment of CD8+ T cells responding to WT1A and WT1B, we immunized HLA-A2.1 mice with either peptide. WT1A immunization elicited numerically higher CD8+ T-cell responses to the native tumor epitope following re-stimulation, although both regimens produced functionally similar responses toward WT1A via cytokine analysis and CD107a expression. Interestingly, however, WT1B immunization generated cross-reactive CD8+ T-cell responses to WT1A and could be further expanded by WT1A peptide revealing two distinct populations of single- and cross-reactive WT1A+CD8+ T cells with unique T-cell receptor-αβ gene signatures. Therefore, although both epitopes are immunogenic, the clinical benefits of WT1B vaccination remains debatable and perhaps both peptides may have separate clinical benefits as treatment targets.
  • Item
    Thumbnail Image
    Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity
    Koutsakos, M ; Wheatley, AK ; Loh, L ; Clemens, EB ; Sant, S ; Nussing, S ; Fox, A ; Chung, AW ; Laurie, KL ; Hurt, AC ; Rockman, S ; Lappas, M ; Loudovaris, T ; Mannering, SI ; Westall, GP ; Elliot, M ; Tangye, SG ; Wakim, LM ; Kent, SJ ; Nguyen, THO ; Kedzierska, K (AMER ASSOC ADVANCEMENT SCIENCE, 2018-02-14)
    Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (TFH) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5-CXCR3+ antibody-secreting B cell population, CD21hiCD27+ memory B cells, and CD21loCD27+ B cells. Activation of circulating TFH cells correlated with the development of both CD21lo and CD21hi memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8+, mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21hiCD27+) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating TFH cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity.
  • Item
    Thumbnail Image
    Perturbed CD8+ T cell immunity across universal influenza epitopes in the elderly
    Nguyen, THO ; Sant, S ; Bird, NL ; Grant, EJ ; Clemens, EB ; Koutsakos, M ; Valkenburg, SA ; Gras, S ; Lappas, M ; Jaworowski, A ; Crowe, J ; Loh, L ; Kedzierska, K (OXFORD UNIV PRESS, 2018-02)
    Influenza epidemics lead to severe illness, life-threatening complications, and deaths, especially in the elderly. As CD8+ T cells are associated with rapid recovery from influenza, we investigated the effects of aging on antigen-specific CD8+ T cells across the universal influenza epitopes in humans. We show that aging is characterized by altered frequencies in T cell subsets, with naive T cells being partially replaced by activated effector/memory populations. Although we observed no striking differences in TCR signaling capacity, T cells in the elderly had increased expression of transcription factors Eomes and T-bet, and such changes were most apparent in CD8+ T cells. Strikingly, the numbers of antigen-specific CD8+ T cells across universal influenza epitopes were reduced in the elderly, although their effector/memory phenotypes remained stable. To understand whether diminished numbers of influenza-specific CD8+ T cells in the elderly resulted from alteration in TCR clonotypes, we dissected the TCRαβ repertoire specific for the prominent HLA-A*02:01-restricted-M158-66 (A2/M158 ) influenza epitope. We provide the first ex vivo data on paired antigen-specific TCRαβ clonotypes in the elderly, showing that influenza-specific A2/M158+ TCRαβ repertoires in the elderly adults varied from those in younger adults, with the main features being a reduction in the frequency of the public TRAV27-TRBV19 TCRαβ clonotype, increased proportion of private TCRαβ signatures, broader use of TRAV and TRBV gene segments, and large clonal expansion of private TCRαβ clonotypes with longer CDR3 loops. Our study supports the development of T cell-targeted influenza vaccines that would boost the T cell compartment during life and maintain the numbers and optimal TCRαβ signatures in the elderly.
  • Item
    Thumbnail Image
    Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease
    Wang, Z ; Zhu, L ; Nguyen, THO ; Wan, Y ; Sant, S ; Quinones-Parra, SM ; Crawford, JC ; Eltahla, AA ; Rizzetto, S ; Bull, RA ; Qiu, C ; Koutsakos, M ; Clemens, EB ; Loh, L ; Chen, T ; Liu, L ; Cao, P ; Ren, Y ; Kedzierski, L ; Kotsimbos, T ; McCaw, JM ; La Gruta, NL ; Turner, SJ ; Cheng, AC ; Luciani, F ; Zhang, X ; Doherty, PC ; Thomas, PG ; Xu, J ; Kedzierska, K (NATURE PORTFOLIO, 2018-02-26)
    Severe influenza A virus (IAV) infection is associated with immune dysfunction. Here, we show circulating CD8+ T-cell profiles from patients hospitalized with avian H7N9, seasonal IAV, and influenza vaccinees. Patient survival reflects an early, transient prevalence of highly activated CD38+HLA-DR+PD-1+ CD8+ T cells, whereas the prolonged persistence of this set is found in ultimately fatal cases. Single-cell T cell receptor (TCR)-αβ analyses of activated CD38+HLA-DR+CD8+ T cells show similar TCRαβ diversity but differential clonal expansion kinetics in surviving and fatal H7N9 patients. Delayed clonal expansion associated with an early dichotomy at a transcriptome level (as detected by single-cell RNAseq) is found in CD38+HLA-DR+CD8+ T cells from patients who succumbed to the disease, suggesting a divergent differentiation pathway of CD38+HLA-DR+CD8+ T cells from the outset during fatal disease. Our study proposes that effective expansion of cross-reactive influenza-specific TCRαβ clonotypes with appropriate transcriptome signatures is needed for early protection against severe influenza disease.