Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Identification and isolation of slow-cycling glioma stem cells
    Furst, L ; Atkins, RJ ; Dinevska, M ; Stylli, SS ; Corcoran, NM ; Hovens, CM ; Mantamadiotis, T ; Vitale, I ; Manic, G ; Galluzzi, L (ELSEVIER ACADEMIC PRESS INC, 2022)
    Cancer stem cells are defined as low-abundance, quiescent cells and are considered a major cellular source of tumor recurrence following therapy, which identifies these cells as important therapeutic targets for difficult-to-treat cancers, including high-grade gliomas. By contrast to the highly proliferative bulk tumor cells, glioma stem cells (GSC) are slow-cycling, and therefore less sensitive to DNA damaging cytotoxic drugs. GSC are also less reliant on aerobic glycolytic metabolism, leading to inadequate clearing of GSC by chemotherapy and radiotherapy. The definition of GSC is based on the expression of specific stem cell protein markers. This method of GSC isolation is successful in isolating cell populations that can reliably recapitulate the tumor. However, cell populations that lack stem marker expression may also be capable of tumor recapitulation. Therefore, robust, reproducible methods for isolating GSC are required to identify and isolate cells with stem cell characteristics. Here, we provide a comprehensive and reproducible protocol for the isolation of slow-cycling GSC. Using this method, GSC isolated retain key characteristics of the cells in situ, including expression of genes associated with cell quiescence and invasive potential, compared to non-quiescent cell populations. Thus, isolation of GSC gated on cell proliferation offers a reliable alternative method for in vitro GSC identification, that adequately mirrors the physiological properties of GSC seen in vivo.
  • Item
    Thumbnail Image
    Androgen deprivation therapy promotes an obesity-like microenvironment in periprostatic fat
    Mangiola, S ; Stuchbery, R ; McCoy, P ; Chow, K ; Kurganovs, N ; Kerger, M ; Papenfuss, A ; Hovens, CM ; Corcoran, NM (BIOSCIENTIFICA LTD, 2019-05)
    Prostate cancer is a leading cause of morbidity and cancer-related death worldwide. Androgen deprivation therapy (ADT) is the cornerstone of management for advanced disease. The use of these therapies is associated with multiple side effects, including metabolic syndrome and truncal obesity. At the same time, obesity has been associated with both prostate cancer development and disease progression, linked to its effects on chronic inflammation at a tissue level. The connection between ADT, obesity, inflammation and prostate cancer progression is well established in clinical settings; however, an understanding of the changes in adipose tissue at the molecular level induced by castration therapies is missing. Here, we investigated the transcriptional changes in periprostatic fat tissue induced by profound ADT in a group of patients with high-risk tumours compared to a matching untreated cohort. We find that the deprivation of androgen is associated with a pro-inflammatory and obesity-like adipose tissue microenvironment. This study suggests that the beneficial effect of therapies based on androgen deprivation may be partially counteracted by metabolic and inflammatory side effects in the adipose tissue surrounding the prostate.
  • Item
    Thumbnail Image
    Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone
    Owen, KL ; Gearing, LJ ; Zanker, DJ ; Brockwell, NK ; Khoo, WH ; Roden, DL ; Cmero, M ; Mangiola, S ; Hong, MK ; Spurling, AJ ; McDonald, M ; Chan, C-L ; Pasam, A ; Lyons, RJ ; Duivenvoorden, HM ; Ryan, A ; Butler, LM ; Mariadason, JM ; Phan, TG ; Hayes, VM ; Sandhu, S ; Swarbrick, A ; Corcoran, NM ; Hertzog, PJ ; Croucher, P ; Hovens, C ; Parker, BS (WILEY, 2020-06-04)
    The latency associated with bone metastasis emergence in castrate-resistant prostate cancer is attributed to dormancy, a state in which cancer cells persist prior to overt lesion formation. Using single-cell transcriptomics and ex vivo profiling, we have uncovered the critical role of tumor-intrinsic immune signaling in the retention of cancer cell dormancy. We demonstrate that loss of tumor-intrinsic type I IFN occurs in proliferating prostate cancer cells in bone. This loss suppresses tumor immunogenicity and therapeutic response and promotes bone cell activation to drive cancer progression. Restoration of tumor-intrinsic IFN signaling by HDAC inhibition increased tumor cell visibility, promoted long-term antitumor immunity, and blocked cancer growth in bone. Key findings were validated in patients, including loss of tumor-intrinsic IFN signaling and immunogenicity in bone metastases compared to primary tumors. Data herein provide a rationale as to why current immunotherapeutics fail in bone-metastatic prostate cancer, and provide a new therapeutic strategy to overcome the inefficacy of immune-based therapies in solid cancers.
  • Item
    Thumbnail Image
    Detection of ctDNA in plasma of patients with clinically localised prostate cancer is associated with rapid disease progression
    Lau, E ; McCoy, P ; Reeves, F ; Chow, K ; Clarkson, M ; Kwan, EM ; Packwood, K ; Northen, H ; He, M ; Kingsbury, Z ; Mangiola, S ; Kerger, M ; Furrer, MA ; Crowe, H ; Costello, AJ ; McBride, DJ ; Ross, MT ; Pope, B ; Hovens, CM ; Corcoran, NM (BMC, 2020-08-17)
    BACKGROUND: DNA originating from degenerate tumour cells can be detected in the circulation in many tumour types, where it can be used as a marker of disease burden as well as to monitor treatment response. Although circulating tumour DNA (ctDNA) measurement has prognostic/predictive value in metastatic prostate cancer, its utility in localised disease is unknown. METHODS: We performed whole-genome sequencing of tumour-normal pairs in eight patients with clinically localised disease undergoing prostatectomy, identifying high confidence genomic aberrations. A bespoke DNA capture and amplification panel against the highest prevalence, highest confidence aberrations for each individual was designed and used to interrogate ctDNA isolated from plasma prospectively obtained pre- and post- (24 h and 6 weeks) surgery. In a separate cohort (n = 189), we identified the presence of ctDNA TP53 mutations in preoperative plasma in a retrospective cohort and determined its association with biochemical- and metastasis-free survival. RESULTS: Tumour variants in ctDNA were positively identified pre-treatment in two of eight patients, which in both cases remained detectable postoperatively. Patients with tumour variants in ctDNA had extremely rapid disease recurrence and progression compared to those where variants could not be detected. In terms of aberrations targeted, single nucleotide and structural variants outperformed indels and copy number aberrations. Detection of ctDNA TP53 mutations was associated with a significantly shorter metastasis-free survival (6.2 vs. 9.5 years (HR 2.4; 95% CIs 1.2-4.8, p = 0.014). CONCLUSIONS: CtDNA is uncommonly detected in localised prostate cancer, but its presence portends more rapidly progressive disease.