Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients
    Nguyen, THO ; Koutsakos, M ; van de Sandt, CE ; Crawford, JC ; Loh, L ; Sant, S ; Grzelak, L ; Allen, EK ; Brahm, T ; Clemens, EB ; Auladell, M ; Hensen, L ; Wang, Z ; Nussing, S ; Jia, X ; Gunther, P ; Wheatley, AK ; Kent, SJ ; Aban, M ; Deng, Y-M ; Laurie, KL ; Hurt, AC ; Gras, S ; Rossjohn, J ; Crowe, J ; Xu, J ; Jackson, D ; Brown, LE ; La Gruta, N ; Chen, W ; Doherty, PC ; Turner, SJ ; Kotsimbos, TC ; Thomas, PG ; Cheng, AC ; Kedzierska, K (NATURE PORTFOLIO, 2021-05-11)
    How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/β cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.
  • Item
    Thumbnail Image
    Early Priming Minimizes the Age-Related Immune Compromise of CD8+ T Cell Diversity and Function
    Valkenburg, SA ; Venturi, V ; Dang, THY ; Bird, NL ; Doherty, PC ; Turner, SJ ; Davenport, MP ; Kedzierska, K ; Wherry, EJ (PUBLIC LIBRARY SCIENCE, 2012-02)
    The elderly are particularly susceptible to influenza A virus infections, with increased occurrence, disease severity and reduced vaccine efficacy attributed to declining immunity. Experimentally, the age-dependent decline in influenza-specific CD8(+) T cell responsiveness reflects both functional compromise and the emergence of 'repertoire holes' arising from the loss of low frequency clonotypes. In this study, we asked whether early priming limits the time-related attrition of immune competence. Though primary responses in aged mice were compromised, animals vaccinated at 6 weeks then challenged >20 months later had T-cell responses that were normal in magnitude. Both functional quality and the persistence of 'preferred' TCR clonotypes that expand in a characteristic immunodominance hierarchy were maintained following early priming. Similar to the early priming, vaccination at 22 months followed by challenge retained a response magnitude equivalent to young mice. However, late priming resulted in reduced TCRβ diversity in comparison with vaccination earlier in life. Thus, early priming was critical to maintaining individual and population-wide TCRβ diversity. In summary, early exposure leads to the long-term maintenance of memory T cells and thus preserves optimal, influenza-specific CD8(+) T-cell responsiveness and protects against the age-related attrition of naïve T-cell precursors. Our study supports development of vaccines that prime CD8(+) T-cells early in life to elicit the broadest possible spectrum of CD8(+) T-cell memory and preserve the magnitude, functionality and TCR usage of responding populations. In addition, our study provides the most comprehensive analysis of the aged (primary, secondary primed-early and secondary primed-late) TCR repertoires published to date.
  • Item
    Thumbnail Image
    Protective Efficacy of Cross-Reactive CD8+ T Cells Recognising Mutant Viral Epitopes Depends on Peptide-MHC-I Structural Interactions and T Cell Activation Threshold
    Valkenburg, SA ; Gras, S ; Guillonneau, C ; La Gruta, NL ; Thomas, PG ; Purcell, AW ; Rossjohn, J ; Doherty, PC ; Turner, SJ ; Kedzierska, K ; Douek, DC (PUBLIC LIBRARY SCIENCE, 2010-08)
    Emergence of a new influenza strain leads to a rapid global spread of the virus due to minimal antibody immunity. Pre-existing CD8(+) T-cell immunity directed towards conserved internal viral regions can greatly ameliorate the disease. However, mutational escape within the T cell epitopes is a substantial issue for virus control and vaccine design. Although mutations can result in a loss of T cell recognition, some variants generate cross-reactive T cell responses. In this study, we used reverse genetics to modify the influenza NP(336-374) peptide at a partially-solvent exposed residue (N->A, NPN3A mutation) to assess the availability, effectiveness and mechanism underlying influenza-specific cross-reactive T cell responses. The engineered virus induced a diminished CD8(+) T cell response and selected a narrowed T cell receptor (TCR) repertoire within two V beta regions (V beta 8.3 and V beta 9). This can be partially explained by the H-2D(b)NPN3A structure that showed a loss of several contacts between the NPN3A peptide and H-2D(b), including a contact with His155, a position known to play an important role in mediating TCR-pMHC-I interactions. Despite these differences, common cross-reactive TCRs were detected in both the naïve and immune NPN3A-specific TCR repertoires. However, while the NPN3A epitope primes memory T-cells that give an equivalent recall response to the mutant or wild-type (wt) virus, both are markedly lower than wt->wt challenge. Such decreased CD8(+) responses elicited after heterologous challenge resulted in delayed viral clearance from the infected lung. Furthermore, mice first exposed to the wt virus give a poor, low avidity response following secondary infection with the mutant. Thus, the protective efficacy of cross-reactive CD8(+) T cells recognising mutant viral epitopes depend on peptide-MHC-I structural interactions and functional avidity. Our study does not support vaccine strategies that include immunization against commonly selected cross-reactive variants with mutations at partially-solvent exposed residues that have characteristics comparable to NPN3A.
  • Item
    Thumbnail Image
    Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+T cell response magnitude
    Quinn, KM ; Kan, W-T ; Watson, KA ; Liddicoat, BJ ; Swan, NG ; McQuilten, H ; Denton, AE ; Li, J ; Chen, W ; Brown, LE ; Jackson, DC ; Reading, PC ; Doherty, PC ; Kedzierska, K ; Kedzierski, L ; Turner, SJ ; La Gruta, NL ; Sun, J (PUBLIC LIBRARY SCIENCE, 2017-09-08)
    TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF.
  • Item
    Thumbnail Image
    Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease
    Wang, Z ; Zhu, L ; Nguyen, THO ; Wan, Y ; Sant, S ; Quinones-Parra, SM ; Crawford, JC ; Eltahla, AA ; Rizzetto, S ; Bull, RA ; Qiu, C ; Koutsakos, M ; Clemens, EB ; Loh, L ; Chen, T ; Liu, L ; Cao, P ; Ren, Y ; Kedzierski, L ; Kotsimbos, T ; McCaw, JM ; La Gruta, NL ; Turner, SJ ; Cheng, AC ; Luciani, F ; Zhang, X ; Doherty, PC ; Thomas, PG ; Xu, J ; Kedzierska, K (NATURE PORTFOLIO, 2018-02-26)
    Severe influenza A virus (IAV) infection is associated with immune dysfunction. Here, we show circulating CD8+ T-cell profiles from patients hospitalized with avian H7N9, seasonal IAV, and influenza vaccinees. Patient survival reflects an early, transient prevalence of highly activated CD38+HLA-DR+PD-1+ CD8+ T cells, whereas the prolonged persistence of this set is found in ultimately fatal cases. Single-cell T cell receptor (TCR)-αβ analyses of activated CD38+HLA-DR+CD8+ T cells show similar TCRαβ diversity but differential clonal expansion kinetics in surviving and fatal H7N9 patients. Delayed clonal expansion associated with an early dichotomy at a transcriptome level (as detected by single-cell RNAseq) is found in CD38+HLA-DR+CD8+ T cells from patients who succumbed to the disease, suggesting a divergent differentiation pathway of CD38+HLA-DR+CD8+ T cells from the outset during fatal disease. Our study proposes that effective expansion of cross-reactive influenza-specific TCRαβ clonotypes with appropriate transcriptome signatures is needed for early protection against severe influenza disease.
  • Item
    Thumbnail Image
    Contribution of T cell receptor affinity to overall avidity for virus-specific CD8+ T cell responses
    Kedzierska, K ; La Gruta, NL ; Davenport, MP ; Turner, SJ ; Doherty, PC (NATL ACAD SCIENCES, 2005-08-09)
    Prior analysis has characterized the clonal characteristics of effector CD8(+) T cells specific for the prominent influenza A virus nucleoprotein (NP) and acid polymerase (PA) peptides presented by H2D(b). Using a single-cell approach and determination of CDR3beta profiles, a limited, predominantly "public" repertoire was found for CD8(+)D(b)NP(366)(+)Vbeta8.3+ cells, whereas diverse and "private" T cell antigen receptor (TCR)beta clonotypes were typical of the CD8(+)D(b)PA(224)(+)Vbeta7+ response. This single-cell approach has now been used to relate the contributions of particular clonotypes (or affinities) to high-avidity TCRs, as defined by binding under conditions of limiting tetramer availability. At least by the measure of CDR3beta usage, no difference could be found between total and high-avidity populations in the spectrum of TCR-pMHC affinities throughout the limited, and relatively public, CD8(+)D(b)NP(366)(+)Vbeta8.3+ populations. Conversely, the more even (by clone size), diverse, and private CD8(+)D(b)PA(224)(+)Vbeta7+ response was characterized by the clear partitioning of the largest T cell clones in the high-avidity compartment. These results suggest that the relatively constrained CD8(+)D(b)NP(366)(+)Vbeta8.3+ set utilizes a relatively narrow range of affinities, whereas the broader CD8(+)D(b)PA(224)(+)Vbeta7+ response is induced at a range of TCR-pMHC affinities. Thus, whereas TCR sequence (or affinity) appears to contribute substantially to the avidity profile of diverse virus-specific CD8+ populations, other mechanisms may be prominent where the TCR spectrum is more limited.
  • Item
    Thumbnail Image
    Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope
    Kedzierska, K ; Turner, SJ ; Doherty, PC (NATL ACAD SCIENCES, 2004-04-06)
    The CD8+ T cell response to the immunodominant DbNP366 epitope has been analyzed sequentially to determine the prevalence and persistence of different T cell antigen receptor (TCR)Vbeta8.3 clonotypes after primary and secondary influenza virus challenge. Based on the length and amino acid sequences of the complementarity-determining region 3 of TCRbeta (CDR3beta) loop and associated Jbeta usage, the same dominant TCRbeta signatures were found in the blood, the spleen, and the site of virus-induced pathology in the infected respiratory tract. Longitudinal analysis demonstrated that TCRbeta prominent in the antigen-driven phase of response persisted into memory and were again expanded after secondary challenge. A proportion of these high-frequency TCRbeta expressed "public" CDR3beta sequences that were detected in every mouse sampled, whereas others were found more than once but were not invariably present. Analysis of N-region nucleotide diversity established that as many as 10 different nucleic acid sequences (maximum of four "nucleotypes" in any one mouse) could encode a single public TCRbeta amino acid sequence. Conversely, whereas some of the unique, "private" TCRbeta achieved a substantial clone size, they were always specified by a single nucleotype. Although there is a strong stochastic element in this response, the public TCRbeta seem to represent a "best fit" for this immunodominant epitope, are selected preferentially from the naive TCR repertoire, and assume even greater prominence after secondary challenge.
  • Item
    Thumbnail Image
    A virus-specific CD8+ T cell immunodominance hierarchy determined by antigen dose and precursor frequencies
    La Gruta, NL ; Kedzierska, K ; Pang, K ; Davenport, M ; Chen, WS ; Turner, SJ ; Doherty, PC (NATL ACAD SCIENCES, 2006-01-24)
    Immunodominance hierarchies are a substantial, but poorly understood, characteristic of CD8(+) T cell-mediated immunity. Factors influencing the differential responses to the influenza A virus nucleoprotein (NP(366-374)) and acid polymerase (PA(224-233)) peptides presented by H2D(b) have been analyzed by disabling (N5--> Q substitution) these peptides in their native configuration, then expressing them in the viral neuraminidase protein. This strategy of shifting epitopes within the same viral context resulted in an apparent equalization of D(b)NP(366) [epitope consisting of viral nucleoprotein (NP) amino acid residues 366-374 complexed with the H2D(b) MHC class I glycoprotein] and D(b)PA(224) (H2D(b)+PA(224-233)) epitope abundance after direct infection in vitro and induced reproducible changes in the magnitude of the D(b)NP(366)- and D(b)PA(224)-specific T cell subsets generated after infection of mice. Comparison of D(b)NP(366)- and D(b) PA(224)-specific CD8(+) T cell responses induced from the native configuration and from the viral neuraminidase stalk demonstrated that the size of both primary and secondary responses is influenced by relative epitope levels and that, at least after secondary challenge, the magnitude of responses is also determined by CD8(+) T cell precursor frequency. Thus, this immunodominance hierarchy is a direct function of antigen dose and T cell numbers.
  • Item
    Thumbnail Image
    Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations
    TURNER, STEPHEN JOHN ; KEDZIERSKA, KATHERINE ; KOMODROMOU, HELEN ; LA GRUTA, NICOLE LOUISE ; DUNSTONE, MICHELLE ; WEBB, ANDREW ; WEBBY, RICHARD ; WALDEN, HELEN ; XIE, WEIDONG ; MCCLUSKEY, JAMES ; PURCELL, ANTHONY ; ROSSJOHN, JAMIE ; DOHERTY, PETER CHARLES ( 2005)