Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients
    Nguyen, THO ; Koutsakos, M ; van de Sandt, CE ; Crawford, JC ; Loh, L ; Sant, S ; Grzelak, L ; Allen, EK ; Brahm, T ; Clemens, EB ; Auladell, M ; Hensen, L ; Wang, Z ; Nussing, S ; Jia, X ; Gunther, P ; Wheatley, AK ; Kent, SJ ; Aban, M ; Deng, Y-M ; Laurie, KL ; Hurt, AC ; Gras, S ; Rossjohn, J ; Crowe, J ; Xu, J ; Jackson, D ; Brown, LE ; La Gruta, N ; Chen, W ; Doherty, PC ; Turner, SJ ; Kotsimbos, TC ; Thomas, PG ; Cheng, AC ; Kedzierska, K (NATURE PORTFOLIO, 2021-05-11)
    How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/β cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.
  • Item
    Thumbnail Image
    Human γδ T-cell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation
    Sant, S ; Jenkins, MR ; Dash, P ; Watson, KA ; Wang, Z ; Pizzolla, A ; Koutsakos, M ; Nguyen, THO ; Lappas, M ; Crowe, J ; Loudovaris, T ; Mannering, S ; Westall, GP ; Kotsimbos, TC ; Cheng, AC ; Wakim, L ; Doherty, PC ; Thomas, PG ; Loh, L ; Kedzierska, K (WILEY, 2019)
    BACKGROUND: Although γδ T cells comprise up to 10% of human peripheral blood T cells, questions remain regarding their role in disease states and T-cell receptor (TCR) clonal expansions. We dissected anti-viral functions of human γδ T cells towards influenza viruses and defined influenza-reactive γδ TCRs in the context of γδ-TCRs across the human lifespan. METHODS: We performed 51Cr-killing assay and single-cell time-lapse live video microscopy to define mechanisms underlying γδ T-cell-mediated killing of influenza-infected targets. We assessed cytotoxic profiles of γδ T cells in influenza-infected patients and IFN-γ production towards influenza-infected lung epithelial cells. Using single-cell RT-PCR, we characterised paired TCRγδ clonotypes for influenza-reactive γδ T cells in comparison with TCRs from healthy neonates, adults, elderly donors and tissues. RESULTS: We provide the first visual evidence of γδ T-cell-mediated killing of influenza-infected targets and show distinct features to those reported for CD8+ T cells. γδ T cells displayed poly-cytotoxic profiles in influenza-infected patients and produced IFN-γ towards influenza-infected cells. These IFN-γ-producing γδ T cells were skewed towards the γ9δ2 TCRs, particularly expressing the public GV9-TCRγ, capable of pairing with numerous TCR-δ chains, suggesting their significant role in γδ T-cell immunity. Neonatal γδ T cells displayed extensive non-overlapping TCRγδ repertoires, while adults had enriched γ9δ2-pairings with diverse CDR3γδ regions. Conversely, the elderly showed distinct γδ-pairings characterised by large clonal expansions, a profile also prominent in adult tissues. CONCLUSION: Human TCRγδ repertoire is shaped by age, tissue compartmentalisation and the individual's history of infection, suggesting that these somewhat enigmatic γδ T cells indeed respond to antigen challenge.
  • Item
    No Preview Available
    Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation
    Loh, L ; Wang, Z ; Sant, S ; Koutsakos, M ; Jegaskanda, S ; Corbett, AJ ; Liu, L ; Fairlie, DP ; Crowe, J ; Rossjohn, J ; Xu, J ; Doherty, PC ; McCluskey, J ; Kedzierska, K (NATL ACAD SCIENCES, 2016-09-06)
    Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161(+)Vα7.2(+) MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56(+)CD3(-)) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14(+) monocytes. Overall, this evidence for IAV activation via an indirect, IL-18-dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur.
  • Item
    Thumbnail Image
    Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease
    Wang, Z ; Zhu, L ; Nguyen, THO ; Wan, Y ; Sant, S ; Quinones-Parra, SM ; Crawford, JC ; Eltahla, AA ; Rizzetto, S ; Bull, RA ; Qiu, C ; Koutsakos, M ; Clemens, EB ; Loh, L ; Chen, T ; Liu, L ; Cao, P ; Ren, Y ; Kedzierski, L ; Kotsimbos, T ; McCaw, JM ; La Gruta, NL ; Turner, SJ ; Cheng, AC ; Luciani, F ; Zhang, X ; Doherty, PC ; Thomas, PG ; Xu, J ; Kedzierska, K (NATURE PORTFOLIO, 2018-02-26)
    Severe influenza A virus (IAV) infection is associated with immune dysfunction. Here, we show circulating CD8+ T-cell profiles from patients hospitalized with avian H7N9, seasonal IAV, and influenza vaccinees. Patient survival reflects an early, transient prevalence of highly activated CD38+HLA-DR+PD-1+ CD8+ T cells, whereas the prolonged persistence of this set is found in ultimately fatal cases. Single-cell T cell receptor (TCR)-αβ analyses of activated CD38+HLA-DR+CD8+ T cells show similar TCRαβ diversity but differential clonal expansion kinetics in surviving and fatal H7N9 patients. Delayed clonal expansion associated with an early dichotomy at a transcriptome level (as detected by single-cell RNAseq) is found in CD38+HLA-DR+CD8+ T cells from patients who succumbed to the disease, suggesting a divergent differentiation pathway of CD38+HLA-DR+CD8+ T cells from the outset during fatal disease. Our study proposes that effective expansion of cross-reactive influenza-specific TCRαβ clonotypes with appropriate transcriptome signatures is needed for early protection against severe influenza disease.