Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    α-Glucuronosyl and α-glucosyl diacylglycerides, natural killer T cell-activating lipids from bacteria and fungi
    Burugupalli, S ; Almeida, CF ; Smith, DGM ; Shah, S ; Patel, O ; Rossjohn, J ; Uldrich, AP ; Godfrey, DI ; Williams, SJ (ROYAL SOC CHEMISTRY, 2020-02-28)
    Natural killer T cells express T cell receptors (TCRs) that recognize glycolipid antigens in association with the antigen-presenting molecule CD1d. Here, we report the concise chemical synthesis of a range of saturated and unsaturated α-glucosyl and α-glucuronosyl diacylglycerides of bacterial and fungal origins from allyl α-glucoside with Jacobsen kinetic resolution as a key step. These glycolipids are recognized by a classical type I NKT TCR that uses an invariant Vα14-Jα18 TCR α-chain, but also by an atypical NKT TCR that uses a different TCR α-chain (Vα10-Jα50). In both cases, recognition is sensitive to the lipid fine structure, and includes recognition of glycosyl diacylglycerides bearing branched (R- and S-tuberculostearic acid) and unsaturated (oleic and vaccenic) acids. The TCR footprints on CD1d loaded with a mycobacterial α-glucuronosyl diacylglyceride were assessed using mutant CD1d molecules and, while similar to that for α-GalCer recognition by a type I NKT TCR, were more sensitive to mutations when α-glucuronosyl diacylglyceride was the antigen. In summary, we provide an efficient approach for synthesis of a broad class of bacterial and fungal α-glycosyl diacylglyceride antigens and demonstrate that they can be recognised by TCRs derived from type I and atypical NKT cells.
  • Item
    Thumbnail Image
    Distinct CD1d docking strategies exhibited by diverse Type II NKT cell receptors
    Almeida, CF ; Sundararaj, S ; Le Nours, J ; Praveena, T ; Cao, B ; Burugupalli, S ; Smith, DGM ; Patel, O ; Brigl, M ; Pellicci, DG ; Williams, SJ ; Uldrich, AP ; Godfrey, DI ; Rossjohn, J (NATURE PORTFOLIO, 2019-11-20)
    Type I and type II natural killer T (NKT) cells are restricted to the lipid antigen-presenting molecule CD1d. While we have an understanding of the antigen reactivity and function of type I NKT cells, our knowledge of type II NKT cells in health and disease remains unclear. Here we describe a population of type II NKT cells that recognise and respond to the microbial antigen, α-glucuronosyl-diacylglycerol (α-GlcADAG) presented by CD1d, but not the prototypical type I NKT cell agonist, α-galactosylceramide. Surprisingly, the crystal structure of a type II NKT TCR-CD1d-α-GlcADAG complex reveals a CD1d F'-pocket-docking mode that contrasts sharply with the previously determined A'-roof positioning of a sulfatide-reactive type II NKT TCR. Our data also suggest that diverse type II NKT TCRs directed against distinct microbial or mammalian lipid antigens adopt multiple recognition strategies on CD1d, thereby maximising the potential for type II NKT cells to detect different lipid antigens.
  • Item
    No Preview Available
    A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage
    Koay, H-F ; Gherardin, NA ; Enders, A ; Loh, L ; Mackay, LK ; Almeida, CF ; Russ, BE ; Nold-Petry, CA ; Nold, MF ; Bedoui, S ; Chen, Z ; Corbett, AJ ; Eckle, SBG ; Meehan, B ; d'Udekem, Y ; Konstantinov, IE ; Lappas, M ; Liu, L ; Goodnow, CC ; Fairlie, DP ; Rossjohn, J ; Chong, MM ; Kedzierska, K ; Berzins, SP ; Belz, GT ; McCluskey, J ; Uldrich, AP ; Godfrey, DI ; Pellicci, DG (NATURE PUBLISHING GROUP, 2016-11)
    Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
  • Item
    No Preview Available
    Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells
    Wolf, BJ ; Tatituri, RVV ; Almeida, CF ; Le Nours, J ; Bhowruth, V ; Johnson, D ; Uldrich, AP ; Hsu, F-F ; Brigl, M ; Besra, GS ; Rossjohn, J ; Godfrey, DI ; Brenner, MB (AMER ASSOC IMMUNOLOGISTS, 2015-09-15)
    Semi-invariant/type I NKT cells are a well-characterized CD1d-restricted T cell subset. The availability of potent Ags and tetramers for semi-invariant/type I NKT cells allowed this population to be extensively studied and revealed their central roles in infection, autoimmunity, and tumor immunity. In contrast, diverse/type II NKT (dNKT) cells are poorly understood because the lipid Ags that they recognize are largely unknown. We sought to identify dNKT cell lipid Ag(s) by interrogating a panel of dNKT mouse cell hybridomas with lipid extracts from the pathogen Listeria monocytogenes. We identified Listeria phosphatidylglycerol as a microbial Ag that was significantly more potent than a previously characterized dNKT cell Ag, mammalian phosphatidylglycerol. Further, although mammalian phosphatidylglycerol-loaded CD1d tetramers did not stain dNKT cells, the Listeria-derived phosphatidylglycerol-loaded tetramers did. The structure of Listeria phosphatidylglycerol was distinct from mammalian phosphatidylglycerol because it contained shorter, fully-saturated anteiso fatty acid lipid tails. CD1d-binding lipid-displacement studies revealed that the microbial phosphatidylglycerol Ag binds significantly better to CD1d than do counterparts with the same headgroup. These data reveal a highly potent microbial lipid Ag for a subset of dNKT cells and provide an explanation for its increased Ag potency compared with the mammalian counterpart.
  • Item
    No Preview Available
    Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs
    Tatituri, RVV ; Watts, GFM ; Bhowruth, V ; Barton, N ; Rothchild, A ; Hsu, F-F ; Almeida, CF ; Cox, LR ; Eggeling, L ; Cardell, S ; Rossjohn, J ; Godfrey, DI ; Behar, SM ; Besra, GS ; Brenner, MB ; Brigl, M (NATL ACAD SCIENCES, 2013-01-29)
    CD1d-restricted natural killer T (NKT) cells include two major subgroups. The most widely studied are Vα14Jα18(+) invariant NKT (iNKT) cells that recognize the prototypical α-galactosylceramide antigen, whereas the other major group uses diverse T-cell receptor (TCR) α-and β-chains, does not recognize α-galactosylceramide, and is referred to as diverse NKT (dNKT) cells. dNKT cells play important roles during infection and autoimmunity, but the antigens they recognize remain poorly understood. Here, we identified phosphatidylglycerol (PG), diphosphatidylglycerol (DPG, or cardiolipin), and phosphatidylinositol from Mycobacterium tuberculosis or Corynebacterium glutamicum as microbial antigens that stimulated various dNKT, but not iNKT, hybridomas. dNKT hybridomas showed distinct reactivities for diverse antigens. Stimulation of dNKT hybridomas by microbial PG was independent of Toll-like receptor-mediated signaling by antigen-presenting cells and required lipid uptake and/or processing. Furthermore, microbial PG bound to CD1d molecules and plate-bound PG/CD1d complexes stimulated dNKT hybridomas, indicating direct recognition by the dNKT cell TCR. Interestingly, despite structural differences in acyl chain composition between microbial and mammalian PG and DPG, lipids from both sources stimulated dNKT hybridomas, suggesting that presentation of microbial lipids and enhanced availability of stimulatory self-lipids may both contribute to dNKT cell activation during infection.