Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Total Synthesis of Mycobacterium tuberculosis Dideoxymy-cobactin-838 and Stereoisomers: Diverse CD1a-Restricted T Cells Display a Common Hierarchy of Lipopeptide Recognition
    Cheng, JMH ; Liu, L ; Pellicci, DG ; Reddiex, SJJ ; Cotton, RN ; Cheng, T-Y ; Young, DC ; Van Rhijn, I ; Moody, DB ; Rossjohn, J ; Fairlie, DP ; Godfrey, DI ; Williams, SJ (WILEY-V C H VERLAG GMBH, 2017-01)
    Mycobacterium tuberculosis produces dideoxymycobactin-838 (DDM-838), a lipopeptide that potently activates T cells upon binding to the MHC-like antigen-presenting molecule CD1a. M. tuberculosis produces DDM-838 in only trace amounts and a previous solid-phase synthesis provided sub-milligram quantities. We describe a high-yielding solution-phase synthesis of DDM-838 that features a Mitsunobu substitution that avoids yield-limiting epimerization at lysine during esterification, and amidation conditions that prevent double-bond isomerization of the Z-C20:1 acyl chain, and provides material with equivalent antigenicity to natural DDM-838. Isomers of DDM-838 that varied in stereochemistry at the central lysine and the C20:1 acyl chain were compared for their ability to be recognised by CD1a-restricted T cell receptors (TCRs). These TCRs, derived from unrelated human donors, exhibited a similar spectrum of reactivity towards the panel of DDM-838 isomers, highlighting the exquisite sensitivity of lipopeptide-reactive T cells for the natural DDM stereochemistry.
  • Item
    Thumbnail Image
    Characterization of Human Mucosal-associated Invariant T (MAIT) Cells
    Souter, MNT ; Loh, L ; Li, S ; Meehan, BS ; Gherardin, NA ; Godfrey, DI ; Rossjohn, J ; Fairlie, DP ; Kedzierska, K ; Pellicci, DG ; Chen, Z ; Kjer-Nielsen, L ; Corbett, AJ ; McCluskey, J ; Eckle, SBG (Wiley-Blackwell, 2019)
    Mucosal‐associated invariant T (MAIT) cells are a subset of unconventional T cells restricted by the major histocompatibility complex (MHC) class I–like molecule MHC‐related protein 1 (MR1). MAIT cells are found throughout the body, especially in human blood and liver. Unlike conventional T cells, which are stimulated by peptide antigens presented by MHC molecules, MAIT cells recognize metabolite antigens derived from an intermediate in the microbial biosynthesis of riboflavin. MAIT cells mediate protective immunity to infections by riboflavin‐producing microbes via the production of cytokines and cytotoxicity. The discovery of stimulating MAIT cell antigens allowed for the development of an analytical tool, the MR1 tetramer, that binds specifically to the MAIT T cell receptor (TCR) and is becoming the gold standard for identification of MAIT cells by flow cytometry. This article describes protocols to characterize the phenotype of human MAIT cells in blood and tissues by flow cytometry using fluorescently labeled human MR1 tetramers alongside antibodies specific for MAIT cell markers.
  • Item
    Thumbnail Image
    Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens
    Le Nours, J ; Praveena, T ; Pellicci, DG ; Gherardin, NA ; Ross, FJ ; Lim, RT ; Besra, GS ; Keshipeddy, S ; Richardson, SK ; Howell, AR ; Gras, S ; Godfrey, DI ; Rossjohn, J ; Uldrich, AP (NATURE PUBLISHING GROUP, 2016-02)
    Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d-α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1(+) type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7-8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A'-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d-α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition.
  • Item
    Thumbnail Image
    Distinct CD1d docking strategies exhibited by diverse Type II NKT cell receptors
    Almeida, CF ; Sundararaj, S ; Le Nours, J ; Praveena, T ; Cao, B ; Burugupalli, S ; Smith, DGM ; Patel, O ; Brigl, M ; Pellicci, DG ; Williams, SJ ; Uldrich, AP ; Godfrey, DI ; Rossjohn, J (NATURE PORTFOLIO, 2019-11-20)
    Type I and type II natural killer T (NKT) cells are restricted to the lipid antigen-presenting molecule CD1d. While we have an understanding of the antigen reactivity and function of type I NKT cells, our knowledge of type II NKT cells in health and disease remains unclear. Here we describe a population of type II NKT cells that recognise and respond to the microbial antigen, α-glucuronosyl-diacylglycerol (α-GlcADAG) presented by CD1d, but not the prototypical type I NKT cell agonist, α-galactosylceramide. Surprisingly, the crystal structure of a type II NKT TCR-CD1d-α-GlcADAG complex reveals a CD1d F'-pocket-docking mode that contrasts sharply with the previously determined A'-roof positioning of a sulfatide-reactive type II NKT TCR. Our data also suggest that diverse type II NKT TCRs directed against distinct microbial or mammalian lipid antigens adopt multiple recognition strategies on CD1d, thereby maximising the potential for type II NKT cells to detect different lipid antigens.
  • Item
    No Preview Available
    A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage
    Koay, H-F ; Gherardin, NA ; Enders, A ; Loh, L ; Mackay, LK ; Almeida, CF ; Russ, BE ; Nold-Petry, CA ; Nold, MF ; Bedoui, S ; Chen, Z ; Corbett, AJ ; Eckle, SBG ; Meehan, B ; d'Udekem, Y ; Konstantinov, IE ; Lappas, M ; Liu, L ; Goodnow, CC ; Fairlie, DP ; Rossjohn, J ; Chong, MM ; Kedzierska, K ; Berzins, SP ; Belz, GT ; McCluskey, J ; Uldrich, AP ; Godfrey, DI ; Pellicci, DG (NATURE PUBLISHING GROUP, 2016-11)
    Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
  • Item
    Thumbnail Image
    The molecular bases of δ/αβ T cell-mediated antigen recognition
    Pellicci, DG ; Uldrich, AP ; Le Nours, J ; Ross, F ; Chabrol, E ; Eckle, SBG ; de Boer, R ; Lim, RT ; McPherson, K ; Besra, G ; Howell, AR ; Moretta, L ; McCluskey, J ; Heemskerk, MHM ; Gras, S ; Rossjohn, J ; Godfrey, DI (ROCKEFELLER UNIV PRESS, 2014-12-15)
    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1(+) human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity.
  • Item
    Thumbnail Image
    Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers
    Rahimpour, A ; Koay, HF ; Enders, A ; Clanchy, R ; Eckle, SBG ; Meehan, B ; Chen, Z ; Whittle, B ; Liu, L ; Fairlie, DP ; Goodnow, CC ; McCluskey, J ; Rossjohn, J ; Uldrich, AP ; Pellicci, DG ; Godfrey, DI (ROCKEFELLER UNIV PRESS, 2015-06-29)
    Studies on the biology of mucosal-associated invariant T cells (MAIT cells) in mice have been hampered by a lack of specific reagents. Using MR1-antigen (Ag) tetramers that specifically bind to the MR1-restricted MAIT T cell receptors (TCRs), we demonstrate that MAIT cells are detectable in a broad range of tissues in C57BL/6 and BALB/c mice. These cells include CD4(-)CD8(-), CD4(-)CD8(+), and CD4(+)CD8(-) subsets, and their frequency varies in a tissue- and strain-specific manner. Mouse MAIT cells have a CD44(hi)CD62L(lo) memory phenotype and produce high levels of IL-17A, whereas other cytokines, including IFN-γ, IL-4, IL-10, IL-13, and GM-CSF, are produced at low to moderate levels. Consistent with high IL-17A production, most MAIT cells express high levels of retinoic acid-related orphan receptor γt (RORγt), whereas RORγt(lo) MAIT cells predominantly express T-bet and produce IFN-γ. Most MAIT cells express the promyelocytic leukemia zinc finger (PLZF) transcription factor, and their development is largely PLZF dependent. These observations contrast with previous reports that MAIT cells from Vα19 TCR transgenic mice are PLZF(-) and express a naive CD44(lo) phenotype. Accordingly, MAIT cells from normal mice more closely resemble human MAIT cells than previously appreciated, and this provides the foundation for further investigations of these cells in health and disease.
  • Item
    No Preview Available
    Antigen Specificity of Type I NKT Cells Is Governed by TCR β-Chain Diversity
    Cameron, G ; Pellicci, DG ; Uldrich, AP ; Besra, GS ; Illarionov, P ; Williams, SJ ; La Gruta, NL ; Rossjohn, J ; Godfrey, DI (AMER ASSOC IMMUNOLOGISTS, 2015-11-15)
    NKT cells recognize lipid-based Ags presented by CD1d. Type I NKT cells are often referred to as invariant owing to their mostly invariant TCR α-chain usage (Vα14-Jα18 in mice, Vα24-Jα18 in humans). However, these cells have diverse TCR β-chains, including Vβ8, Vβ7, and Vβ2 in mice and Vβ11 in humans, joined to a range of TCR Dβ and Jβ genes. In this study, we demonstrate that TCR β-chain composition can dramatically influence lipid Ag recognition in an Ag-dependent manner. Namely, the glycolipids α-glucosylceramide and isoglobotrihexosylceramide were preferentially recognized by Vβ7(+) NKT cells from mice, whereas the α-galactosylceramide analog OCH, with a truncated sphingosine chain, was preferentially recognized by Vβ8(+) NKT cells from mice. We show that the influence of the TCR β-chain is due to a combination of Vβ-, Jβ-, and CDR3β-encoded residues and that these TCRs can recapitulate the selective Ag reactivity in TCR-transduced cell lines. Similar observations were made with human NKT cells where different CDR3β-encoded residues determined Ag preference. These findings indicate that NKT TCR β-chain diversity results in differential and nonhierarchical Ag recognition by these cells, which implies that some Ags can preferentially activate type I NKT cell subsets.
  • Item
    Thumbnail Image
    NKT cells: the smoking gun in fungal-induced asthma?
    Godfrey, DI ; Pellicci, DG ; Rossjohn, J (NATURE PUBLISHING GROUP, 2013-10)
    Aspergillus fumigatus is a fungus that is associated with a severe form of asthma, although the precise immunological basis for this disease is unclear. A new study in mice shows that natural killer T (NKT) cells are crucial for progression of A. fumigatus–induced asthma and also identifies a glycolipid antigen from this fungus that seems to drive this NKT cell–mediated inflammatory response (pages 1297–1304).
  • Item
    Thumbnail Image
    CD1d-lipid antigen recognition by the γδ TCR
    Uldrich, AP ; Le Nours, J ; Pellicci, DG ; Gherardin, NA ; McPherson, KG ; Lim, RT ; Patel, O ; Beddoe, T ; Gras, S ; Rossjohn, J ; Godfrey, DI (NATURE PUBLISHING GROUP, 2013-11)
    The T cell repertoire comprises αβ and γδ T cell lineages. Although it is established how αβ T cell antigen receptors (TCRs) interact with antigen presented by antigen-presenting molecules, this is unknown for γδ TCRs. We describe a population of human Vδ1(+) γδ T cells that exhibit autoreactivity to CD1d and provide a molecular basis for how a γδ TCR binds CD1d-α-galactosylceramide (α-GalCer). The γδ TCR docked orthogonally, over the A' pocket of CD1d, in which the Vδ1-chain, and in particular the germ line-encoded CDR1δ loop, dominated interactions with CD1d. The TCR γ-chain sat peripherally to the interface, with the CDR3γ loop representing the principal determinant for α-GalCer specificity. Accordingly, we provide insight into how a γδ TCR binds specifically to a lipid-loaded antigen-presenting molecule.