Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    No Preview Available
    Site-Selective Solid-Phase Synthesis of a CCR5 Sulfopeptide Library To Interrogate HIV Binding and Entry
    Liu, X ; Malins, LR ; Roche, M ; Sterjovski, J ; Duncan, R ; Garcia, ML ; Barnes, NC ; Anderson, DA ; Stone, MJ ; Gorry, PR ; Payne, RJ (AMER CHEMICAL SOC, 2014-09)
    Tyrosine (Tyr) sulfation is a common post-translational modification that is implicated in a variety of important biological processes, including the fusion and entry of human immunodeficiency virus type-1 (HIV-1). A number of sulfated Tyr (sTyr) residues on the N-terminus of the CCR5 chemokine receptor are involved in a crucial binding interaction with the gp120 HIV-1 envelope glycoprotein. Despite the established importance of these sTyr residues, the exact structural and functional role of this post-translational modification in HIV-1 infection is not fully understood. Detailed biological studies are hindered in part by the difficulty in accessing homogeneous sulfopeptides and sulfoproteins through biological expression and established synthetic techniques. Herein we describe an efficient approach to the synthesis of sulfopeptides bearing discrete sulfation patterns through the divergent, site-selective incorporation of sTyr residues on solid support. By employing three orthogonally protected Tyr building blocks and a solid-phase sulfation protocol, we demonstrate the synthesis of a library of target N-terminal CCR5(2-22) sulfoforms bearing discrete and differential sulfation at Tyr10, Tyr14, and Tyr15, from a single resin-bound intermediate. We demonstrate the importance of distinct sites of Tyr sulfation in binding gp120 through a competitive binding assay between the synthetic CCR5 sulfopeptides and an anti-gp120 monoclonal antibody. These studies revealed a critical role of sulfation at Tyr14 for binding and a possible additional role for sulfation at Tyr10. N-terminal CCR5 variants bearing a sTyr residue at position 14 were also found to complement viral entry into cells expressing an N-terminally truncated CCR5 receptor.
  • Item
    Thumbnail Image
    Quantifying Susceptibility of CD4+ Stem Memory T-Cells to Infection by Laboratory Adapted and Clinical HIV-1 Strains
    Flynn, JK ; Paukovics, G ; Cashin, K ; Borm, K ; Ellett, A ; Roche, M ; Jakobsen, MR ; Churchill, MJ ; Gorry, PR (MDPI AG, 2014-02)
    CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs.
  • Item
    Thumbnail Image
    Stem memory T cells (TSCM)-their role in cancer and HIV immunotherapies.
    Flynn, JK ; Gorry, PR (Wiley, 2014-07)
    Stem memory T cells (TSCM) have been described in mice, non-human primates and in humans, constituting approximately 2-4% of the total CD4(+) and CD8(+) T-cell population in the periphery. TSCM represent the earliest and long-lasting developmental stage of memory T cells, displaying stem cell-like properties, and exhibiting a gene profile between naïve and central memory T cells. Their self-renewal capacity and long-term survival has sparked interest in the cancer and human immunodeficiency virus (HIV) fields. How and when the formation of TSCM occurs during the immune response to pathogens and the therapeutic potential of these cells are currently being investigated. This review will explore the potential role of TSCM to be used as, or targeted by, immunotherapies and vaccines for treatment of cancer and HIV.
  • Item
    Thumbnail Image
    Distinct HIV-1 entry phenotypes are associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies
    Chikere, K ; Webb, NE ; Chou, T ; Borm, K ; Sterjovski, J ; Gorry, PR ; Lee, B (BMC, 2014-06-23)
    BACKGROUND: The efficiency of CD4/CCR5 mediated HIV-1 entry has important implications for pathogenesis and transmission. The HIV-1 receptor affinity profiling (Affinofile) system analyzes and quantifies the infectivity of HIV-1 envelopes (Envs) across a spectrum of CD4/CCR5 expression levels and distills these data into a set of Affinofile metrics. The Affinofile system has shed light on how differential CD4/CCR5 usage efficiencies contributes to an array of Env phenotypes associated with cellular tropism, viral pathogenesis, and CCR5 inhibitor resistance. To facilitate more rapid, convenient, and robust analysis of HIV-1 entry phenotypes, we engineered a reporter Affinofile system containing a Tat- and Rev-dependent Gaussia luciferase-eGFP-Reporter (GGR) that is compatible with the use of pseudotyped or replication competent viruses with or without a virally encoded reporter gene. This GGR Affinofile system enabled a higher throughput characterization of CD4/CCR5 usage efficiencies associated with differential Env phenotypes. RESULTS: We first validated our GGR Affinofile system on isogenic JR-CSF Env mutants that differ in their affinity for CD4 and/or CCR5. We established that their GGR Affinofile metrics reflected their differential entry phenotypes on primary PBMCs and CD4+ T-cell subsets. We then applied GGR Affinofile profiling to reveal distinct entry phenotypes associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies (BNAbs). First, we profiled a panel of reference subtype B transmitted/founder (T/F) and chronic Envs (n = 12) by analyzing the infectivity of each Env across 25 distinct combinations of CD4/CCR5 expression levels. Affinofile metrics revealed that at low CCR5 levels, our panel of subtype B T/F Envs was more dependent on high levels of CD4 for HIV-1 entry compared to chronic Envs. Next, we analyzed a reference panel of 28 acute/early subtype A-D Envs, and noted that subtype C Envs could be distinguished from the other subtypes based on their infectivity profiles and relevant Affinofile metrics. Lastly, mutations known to confer resistance to VRC01 or PG6/PG19 BNAbs, when engineered into subtypes A-D Envs, resulted in significantly decreased CD4/CCR5 usage efficiency. CONCLUSIONS: GGR Affinofile profiling reveals pathophysiological phenotypes associated with varying HIV-1 entry efficiencies, and highlight the fitness costs associated with resistance to some broadly neutralizing antibodies.
  • Item
    Thumbnail Image
    Differences in coreceptor specificity contribute to alternative tropism of HIV-1 subtype C for CD4+ T-cell subsets, including stem cell memory T-cells
    Cashin, K ; Paukovics, G ; Jakobsen, MR ; Ostergaard, L ; Churchill, MJ ; Gorry, PR ; Flynn, JK (BMC, 2014-11-12)
    BACKGROUND: CD4(+) memory T-cells are a major target for infection by HIV-1, whereby latent provirus can establish and endure suppressive antiretroviral therapies. Although HIV-1 subtype C strains (C-HIV) account for the majority of HIV-1 infections worldwide, the susceptibility of CD4(+) memory T-cells to infection by CCR5- (R5) and CXCR4-using (X4) C-HIV is unknown. Here, we quantified the susceptibility of naïve and memory CD4(+) T-cell subsets, including stem cell memory T-cells (TSCM), to infection by HIV-1 subtype C (C-HIV) strains from treatment-naïve subjects who progressed from chronic to advanced stages of disease whilst either maintaining CCR5-using (R5) viruses (subjects 1503 and 1854), or who experienced emergence of dominant CXCR4-using (X4) strains (subject 1109). FINDINGS: We show that R5 and X4 C-HIV viruses preferentially target memory and naïve CD4(+) T-cell subsets, respectively. While TSCM were susceptible to infection by both R5 and X4 C-HIV viruses, the proportion of infected CD4(+) T-cells that were TSCM was higher for R5 strains. Mutagenesis studies of subject 1109 viruses established the V3 region of env as the determinant underlying the preferential targeting of naïve CD4(+) T-cells by emergent X4 C-HIV variants in this subject. In contrast, the tropism of R5 C-HIV viruses for CD4(+) T-cell subsets was maintained from chronic to advanced stages of disease in subjects 1503 and 1854. CONCLUSIONS: This study provides new insights into the natural history of tropism alterations for CD4(+) T-cell subsets by C-HIV strains during progression from chronic to advanced stages of infection. Although not preferentially targeted, our data suggest that TSCM and other memory CD4(+) T-cells are likely to be viral reservoirs in subjects with X4 C-HIV infection.
  • Item
    Thumbnail Image
    HIV-1 Entry and Trans-Infection of Astrocytes Involves CD81 Vesicles
    Gray, LR ; Turville, SG ; HItchen, TL ; Cheng, W-J ; Ellett, AM ; Salimi, H ; Roche, MJ ; Wesselingh, SL ; Gorry, PR ; Churchill, MJ ; Wu, Y (PUBLIC LIBRARY SCIENCE, 2014-02-28)
    Astrocytes are extensively infected with HIV-1 in vivo and play a significant role in the development of HIV-1-associated neurocognitive disorders. Despite their extensive infection, little is known about how astrocytes become infected, since they lack cell surface CD4 expression. In the present study, we investigated the fate of HIV-1 upon infection of astrocytes. Astrocytes were found to bind and harbor virus followed by biphasic decay, with HIV-1 detectable out to 72 hours. HIV-1 was observed to associate with CD81-lined vesicle structures. shRNA silencing of CD81 resulted in less cell-associated virus but no loss of co-localization between HIV-1 and CD81. Astrocytes supported trans-infection of HIV-1 to T-cells without de novo virus production, and the virus-containing compartment required 37°C to form, and was trypsin-resistant. The CD81 compartment observed herein, has been shown in other cell types to be a relatively protective compartment. Within astrocytes, this compartment may be actively involved in virus entry and/or spread. The ability of astrocytes to transfer virus, without de novo viral synthesis suggests they are capable of sequestering and protecting virus and thus, they could potentially facilitate viral dissemination in the CNS.
  • Item
    Thumbnail Image
    Designer antigens for elicitation of broadly neutralizing antibodies against HIV.
    Kok, T ; Gaeguta, A ; Finnie, J ; Gorry, PR ; Churchill, M ; Li, P (Wiley, 2014-09)
    Broadly neutralizing antibodies (bNAbs) are a consistent protective immune correlate in human immunodeficiency virus (HIV) patients as well as in passive immunotherapy studies. The inability to elicit bNAbs is the core reason underlining the repeated failures in traditional HIV vaccine research. Rare monoclonal bNAbs against HIV, however, have been produced. The significance of producing and studying more monoclonal bNAbs against HIV is underlined by its capability of defining critical epitopes for antigen designs aimed at the development of a serum-neutralizing HIV vaccine. In this regard, traditional antigen preparations have failed. There is a need to clearly advocate the concept, and systematic study, of more sophisticated 'designer antigens' (DAGs), which carry epitopes that can lead to the elicitation of bNAbs. Using an extremely efficient cell-to-cell HIV infection model for the preparation of HIV prefusion intermediates, we have investigated a novel and systematic approach to produce (not screen for) potential bNAbs against HIV. We have established the concept and the experimental system for producing formaldehyde-fixed HIV DAGs that carry temperature-arrested prefusion intermediates. These prefusion intermediates are structures on the cell surface after viral attachment and receptor engagement but before fully functional viral entry. Using defined HIV prefusion DAGs, we have produced monoclonal antibodies (mAbs) specific to novel epitopes on HIV prefusion intermediates. These mAbs do not react with the static/native surface HIV or cellular antigens, but react with the DAGs. This is a paradigm shift from the current mainstream approach of screening elite patients' bNAbs.
  • Item
    Thumbnail Image
    Covariance of Charged Amino Acids at Positions 322 and 440 of HIV-1 Env Contributes to Coreceptor Specificity of Subtype B Viruses, and Can Be Used to Improve the Performance of V3 Sequence-Based Coreceptor Usage Prediction Algorithms
    Cashin, K ; Sterjovski, J ; Harvey, KL ; Ramsland, PA ; Churchill, MJ ; Gorry, PR ; Gray, CM (PUBLIC LIBRARY SCIENCE, 2014-10-14)
    The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1) strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env) determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a "440 rule" can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation of Env determinants outside V3 can improve the reliability of coreceptor usage prediction algorithms.
  • Item
    No Preview Available
    HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies
    Gorry, PR ; Francella, N ; Lewin, SR ; Collman, RG (WILEY, 2014-01)
    Myeloid cells residing in the CNS and lymphoid tissues are targets for productive HIV-1 replication, and their infection contributes to the pathological manifestations of HIV-1 infection. The Envs can adopt altered configurations to overcome entry restrictions in macrophages via a more efficient and/or altered mechanism of engagement with cellular receptors. This review highlights evidence supporting an important role for macrophages in HIV-1 pathogenesis and persistence, which need to be considered for strategies aimed at achieving a functional or sterilizing cure. We also highlight that the molecular mechanisms underlying HIV-1 tropism for macrophages are complex, involving enhanced and/or altered interactions with CD4, CCR5, and/or CXCR4, and that the nature of these interactions may depend on the anatomical location of the virus.
  • Item
    Thumbnail Image
    Ex Vivo Response to Histone Deacetylase (HDAC) Inhibitors of the HIV Long Terminal Repeat (LTR) Derived from HIV-Infected Patients on Antiretroviral Therapy
    Lu, HK ; Gray, LR ; Wightman, F ; Ellenberg, P ; Khoury, G ; Cheng, W-J ; Mota, TM ; Wesselingh, S ; Gorry, PR ; Cameron, PU ; Churchill, MJ ; Lewin, SR ; Kashanchi, F (PUBLIC LIBRARY SCIENCE, 2014-11-19)
    Histone deacetylase inhibitors (HDACi) can induce human immunodeficiency virus (HIV) transcription from the HIV long terminal repeat (LTR). However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+) isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART). We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.