Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    State-wide genomic epidemiology investigations of COVID-19 in healthcare workers in 2020 Victoria, Australia: Qualitative thematic analysis to provide insights for future pandemic preparedness
    E. Watt, A ; L. Sherry, N ; Andersson, P ; Lane, CR ; Johnson, S ; Wilmot, M ; Horan, K ; Sait, M ; Ballard, SA ; Crachi, C ; Beck, DJ ; Marshall, C ; Kainer, MA ; Stuart, R ; McGrath, C ; Kwong, JC ; Bass, P ; Kelley, PG ; Crowe, A ; Guy, S ; Macesic, N ; Smith, K ; Williamson, DA ; Seemann, T ; Howden, BP (ELSEVIER, 2022-08)
    BACKGROUND: COVID-19 has affected many healthcare workers (HCWs) globally. We performed state-wide SARS-CoV-2 genomic epidemiological investigations to identify HCW transmission dynamics and provide recommendations to optimise healthcare system preparedness for future outbreaks. METHODS: Genome sequencing was attempted on all COVID-19 cases in Victoria, Australia. We combined genomic and epidemiologic data to investigate the source of HCW infections across multiple healthcare facilities (HCFs) in the state. Phylogenetic analysis and fine-scale hierarchical clustering were performed for the entire dataset including community and healthcare cases. Facilities provided standardised epidemiological data and putative transmission links. FINDINGS: Between March-October 2020, approximately 1,240 HCW COVID-19 infection cases were identified; 765 are included here, requested for hospital investigations. Genomic sequencing was successful for 612 (80%) cases. Thirty-six investigations were undertaken across 12 HCFs. Genomic analysis revealed that multiple introductions of COVID-19 into facilities (31/36) were more common than single introductions (5/36). Major contributors to HCW acquisitions included mobility of staff and patients between wards and facilities, and characteristics and behaviours of patients that generated numerous secondary infections. Key limitations at the HCF level were identified. INTERPRETATION: Genomic epidemiological analyses enhanced understanding of HCW infections, revealing unsuspected clusters and transmission networks. Combined analysis of all HCWs and patients in a HCF should be conducted, supported by high rates of sequencing coverage for all cases in the population. Established systems for integrated genomic epidemiological investigations in healthcare settings will improve HCW safety in future pandemics. FUNDING: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.
  • Item
    Thumbnail Image
    Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020
    Dale, K ; Globan, M ; Horan, K ; Sherry, N ; Ballard, S ; Tay, EL ; Bittmann, S ; Meagher, N ; Price, DJ ; Howden, BP ; Williamson, DA ; Denholm, J (ELSEVIER, 2022-11)
    BACKGROUND: Whole genome sequencing (WGS) is increasingly used by tuberculosis (TB) programs to monitor Mycobacterium tuberculosis (Mtb) transmission. We aimed to characterise the molecular epidemiology of TB and Mtb transmission in the low-incidence setting of Victoria, Australia, and assess the utility of WGS. METHODS: WGS was performed on all first Mtb isolates from TB cases from 2017 to 2020. Potential clusters (≤12 single nucleotide polymorphisms [SNPs]) were investigated for epidemiological links. Transmission events in highly-related (≤5 SNPs) clusters were classified as likely or possible, based on the presence or absence of an epidemiological link, respectively. Case characteristics and transmission settings (as defined by case relationship) were summarised. Poisson regression was used to examine associations with secondary case number. FINDINGS: Of 1844 TB cases, 1276 (69.2%) had sequenced isolates, with 182 (14.2%) in 54 highly-related clusters, 2-40 cases in size. Following investigation, 140 cases (11.0% of sequenced) were classified as resulting from likely/possible local-transmission, including 82 (6.4%) for which transmission was likely. Common identified transmission settings were social/religious (26.4%), household (22.9%) and family living in different households (7.1%), but many were uncertain (41.4%). While household transmission featured in many clusters (n = 24), clusters were generally smaller (median = 3 cases) than the fewer that included transmission in social/religious settings (n = 12, median = 7.5 cases). Sputum-smear-positivity was associated with higher secondary case numbers. INTERPRETATION: WGS results suggest Mtb transmission commonly occurs outside the household in our low-incidence setting. Further work is required to optimise the use of WGS in public health management of TB. FUNDING: The Victorian Tuberculosis Program receives block funding for activities including case management and contact tracing from the Victorian Department of Health. No specific funding for this report was received by manuscript authors or the Victorian Tuberculosis Program, and the funders had no role in the study design, data collection, data analysis, interpretation or report writing.
  • Item
    Thumbnail Image
    Optimising genomic approaches for identifying vancomycin-resistant Enterococcus faecium transmission in healthcare settings
    Higgs, C ; Sherry, NL ; Seemann, T ; Horan, K ; Walpola, H ; Kinsella, P ; Bond, K ; Williamson, DA ; Marshall, C ; Kwong, JC ; Grayson, ML ; Stinear, TP ; Gorrie, CL ; Howden, BP (NATURE PORTFOLIO, 2022-01-26)
    Vancomycin-resistant Enterococcus faecium (VREfm) is a major nosocomial pathogen. Identifying VREfm transmission dynamics permits targeted interventions, and while genomics is increasingly being utilised, methods are not yet standardised or optimised for accuracy. We aimed to develop a standardized genomic method for identifying putative VREfm transmission links. Using comprehensive genomic and epidemiological data from a cohort of 308 VREfm infection or colonization cases, we compared multiple approaches for quantifying genetic relatedness. We showed that clustering by core genome multilocus sequence type (cgMLST) was more informative of population structure than traditional MLST. Pairwise genome comparisons using split k-mer analysis (SKA) provided the high-level resolution needed to infer patient-to-patient transmission. The more common mapping to a reference genome was not sufficiently discriminatory, defining more than three times more genomic transmission events than SKA (3729 compared to 1079 events). Here, we show a standardized genomic framework for inferring VREfm transmission that can be the basis for global deployment of VREfm genomics into routine outbreak detection and investigation.
  • Item
    Thumbnail Image
    Daptomycin Resistance Occurs Predominantly in vanA-Type Vancomycin-Resistant Enterococcus faecium in Australasia and Is Associated With Heterogeneous and Novel Mutations
    Li, L ; Higgs, C ; Turner, AM ; Nong, Y ; Gorrie, CL ; Sherry, NL ; Dyet, KH ; Seemann, T ; Williamson, DA ; Stinear, TP ; Howden, BP ; Carter, GP (FRONTIERS MEDIA SA, 2021-10-20)
    Healthcare associated infections caused by vancomycin-resistant Enterococcus faecium (VREfm) have a major impact on health outcomes. VREfm is difficult to treat because of intrinsic and acquired resistance to many clinically used antimicrobials, with daptomycin being one of the few last line therapeutic options for treating multidrug-resistant VREfm. The emergence of daptomycin-resistant VREfm is therefore of serious clinical concern. Despite this, the impact that daptomycin-resistant VREfm have on patient health outcomes is not clearly defined and knowledge on the mechanisms and genetic signatures linked with daptomycin resistance in VREfm remains incomplete. To address these knowledge gaps, phenotypic daptomycin susceptibility testing was undertaken on 324 E. faecium isolates from Australia and New Zealand. Approximately 15% of study isolates were phenotypically resistant to daptomycin. Whole genome sequencing revealed a strong association between vanA-VREfm and daptomycin resistance, with 95% of daptomycin-resistant study isolates harbouring vanA. Genomic analyses showed that daptomycin-resistant VREfm isolates were polyclonal and carried several previously characterised mutations in the liaR and liaS genes as well as several novel mutations within the rpoB, rpoC, and dltC genes. Overall, 70% of daptomycin-resistant study isolates were found to carry mutations within the liaR, rpoB, rpoC, or dltC genes. Finally, in a mouse model of VREfm bacteraemia, infection with the locally dominant daptomycin-resistant clone led to reduced daptomycin treatment efficacy in comparison to daptomycin-susceptible E. faecium. These findings have important implications for ongoing VREfm surveillance activities and the treatment of VREfm infections.
  • Item
    Thumbnail Image
    Genomic Epidemiology and Antimicrobial Resistance Mechanisms of Imported Typhoid in Australia
    Ingle, DJ ; Andersson, P ; Valcanis, M ; Wilmot, M ; Easton, M ; Lane, C ; Barden, J ; da Silva, AG ; Seemann, T ; Horan, K ; Ballard, SA ; Sherry, NL ; Williamson, DA ; Howden, BP (AMER SOC MICROBIOLOGY, 2021-11)
    Typhoid fever is an invasive bacterial disease of humans that disproportionately affects low- and middle-income countries. Antimicrobial resistance (AMR) has been increasingly prevalent in recent decades in Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, limiting treatment options. In Australia, most cases of typhoid fever are imported due to travel to regions where typhoid fever is endemic. Here, all 116 isolates of S. Typhi isolated in Victoria, Australia, between 1 July 2018 and 30 June 2020, underwent whole-genome sequencing and antimicrobial susceptibility testing. Genomic data were linked to international travel data collected from routine case interviews. Travel to South Asia accounted for most cases, with 92.2% imported from seven primary countries (the top two were India, n = 87, and Pakistan, n = 12). A total of 17 S. Typhi genotypes were detected in the 2-year cohort, with 48.2% genotyped as part of global AMR lineages. Ciprofloxacin resistance was detected in two lineages, 3.3 and 4.3.1.2, all from cases with reported travel to India. Nearly all multidrug and extensively drug resistant isolates (90%) were from cases with reported travel to Pakistan in genotypes 4.3.1.1 and 4.3.1.1.P1. Extended spectrum beta-lactamases, blaCTX-M-15 and blaSHV-12, were detected in cases with travel to Pakistan and India, respectively. Linking epidemiological data with genomic studies of S. Typhi provides an opportunity to improve understanding of the emergence, spread and risk of drug-resistant S. Typhi infections and to better inform empirical treatment guidelines in returned travelers.
  • Item
    No Preview Available
    Use of emerging testing technologies and approaches for SARS-CoV-2: review of literature and global experience in an Australian context
    Graham, M ; Ballard, SA ; Pasricha, S ; Lin, B ; Hoang, T ; Stinear, T ; Druce, J ; Catton, M ; Sherry, N ; Williamson, D ; Howden, BP (ELSEVIER, 2021-10)
    Emerging testing technologies for detection of SARS-CoV-2 include those that are rapid and can be used at point-of-care (POC), and those facilitating high throughput laboratory-based testing. Tests designed to be performed at POC (such as antigen tests and molecular assays) have the potential to expedite isolation of infectious patients and their contacts, but most are less sensitive than standard-of-care reverse transcription polymerase chain reaction (RT-PCR). Data on clinical performance of the majority of emerging assays are limited with most evaluations performed on contrived or stored laboratory samples. Further evaluations of these assays are required, particularly when performed at POC on symptomatic and asymptomatic patients and at various time-points after symptom onset. A few studies have so far shown several of these assays have high specificity. However, large prospective evaluations are needed to confirm specificity, particularly before the assays are implemented in low prevalence settings or asymptomatic populations. High throughput laboratory-based testing includes the use of new sample types (e.g., saliva to increase acceptability) or innovative uses of existing technology (e.g., sample pooling). Information detailing population-wide testing strategies for SARS-COV-2 is largely missing from peer-reviewed literature. Logistics and supply chains are key considerations in any plan to 'scale up' testing in the Australian context. The strategic use of novel assays will help strike the balance between achieving adequate test numbers without overwhelming laboratory capacity. To protect testing of high-risk populations, the aims of testing with respect to the phase of the pandemic must be considered.
  • Item
    No Preview Available
    Genomics-informed responses in the elimination of COVID-19 in Victoria, Australia: an observational, genomic epidemiological study
    Lane, CR ; Sherry, NL ; Porter, AF ; Duchene, S ; Horan, K ; Andersson, P ; Wilmot, M ; Turner, A ; Dougall, S ; Johnson, SA ; Sait, M ; da Silva, AG ; Ballard, SA ; Hoang, T ; Stinear, TP ; Caly, L ; Sintchenko, V ; Graham, R ; McMahon, J ; Smith, D ; Leong, LEX ; Meumann, EM ; Cooley, L ; Schwessinger, B ; Rawlinson, W ; van Hal, SJ ; Stephens, N ; Catton, M ; Looker, C ; Crouch, S ; Sutton, B ; Alpren, C ; Williamson, DA ; Seemann, T ; Howden, BP (ELSEVIER SCI LTD, 2021-08)
    BACKGROUND: A cornerstone of Australia's ability to control COVID-19 has been effective border control with an extensive supervised quarantine programme. However, a rapid recrudescence of COVID-19 was observed in the state of Victoria in June, 2020. We aim to describe the genomic findings that located the source of this second wave and show the role of genomic epidemiology in the successful elimination of COVID-19 for a second time in Australia. METHODS: In this observational, genomic epidemiological study, we did genomic sequencing of all laboratory-confirmed cases of COVID-19 diagnosed in Victoria, Australia between Jan 25, 2020, and Jan 31, 2021. We did phylogenetic analyses, genomic cluster discovery, and integrated results with epidemiological data (detailed information on demographics, risk factors, and exposure) collected via interview by the Victorian Government Department of Health. Genomic transmission networks were used to group multiple genomic clusters when epidemiological and genomic data suggested they arose from a single importation event and diversified within Victoria. To identify transmission of emergent lineages between Victoria and other states or territories in Australia, all publicly available SARS-CoV-2 sequences uploaded before Feb 11, 2021, were obtained from the national sequence sharing programme AusTrakka, and epidemiological data were obtained from the submitting laboratories. We did phylodynamic analyses to estimate the growth rate, doubling time, and number of days from the first local infection to the collection of the first sequenced genome for the dominant local cluster, and compared our growth estimates to previously published estimates from a similar growth phase of lineage B.1.1.7 (also known as the Alpha variant) in the UK. FINDINGS: Between Jan 25, 2020, and Jan 31, 2021, there were 20 451 laboratory-confirmed cases of COVID-19 in Victoria, Australia, of which 15 431 were submitted for sequencing, and 11 711 met all quality control metrics and were included in our analysis. We identified 595 genomic clusters, with a median of five cases per cluster (IQR 2-11). Overall, samples from 11 503 (98·2%) of 11 711 cases clustered with another sample in Victoria, either within a genomic cluster or transmission network. Genomic analysis revealed that 10 426 cases, including 10 416 (98·4%) of 10 584 locally acquired cases, diagnosed during the second wave (between June and October, 2020) were derived from a single incursion from hotel quarantine, with the outbreak lineage (transmission network G, lineage D.2) rapidly detected in other Australian states and territories. Phylodynamic analyses indicated that the epidemic growth rate of the outbreak lineage in Victoria during the initial growth phase (samples collected between June 4 and July 9, 2020; 47·4 putative transmission events, per branch, per year [1/years; 95% credible interval 26·0-85·0]), was similar to that of other reported variants, such as B.1.1.7 in the UK (mean approximately 71·5 1/years). Strict interventions were implemented, and the outbreak lineage has not been detected in Australia since Oct 29, 2020. Subsequent cases represented independent international or interstate introductions, with limited local spread. INTERPRETATION: Our study highlights how rapid escalation of clonal outbreaks can occur from a single incursion. However, strict quarantine measures and decisive public health responses to emergent cases are effective, even with high epidemic growth rates. Real-time genomic surveillance can alter the way in which public health agencies view and respond to COVID-19 outbreaks. FUNDING: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.
  • Item
    Thumbnail Image
    An implementation science approach to evaluating pathogen whole genome sequencing in public health
    Ferdinand, AS ; Kelaher, M ; Lane, CR ; da Silva, AG ; Sherry, NL ; Ballard, SA ; Andersson, P ; Hoang, T ; Denholm, JT ; Easton, M ; Howden, BP ; Williamson, DA (BMC, 2021-07-28)
    BACKGROUND: Pathogen whole genome sequencing (WGS) is being incorporated into public health surveillance and disease control systems worldwide and has the potential to make significant contributions to infectious disease surveillance, outbreak investigation and infection prevention and control. However, to date, there are limited data regarding (i) the optimal models for integration of genomic data into epidemiological investigations and (ii) how to quantify and evaluate public health impacts resulting from genomic epidemiological investigations. METHODS: We developed the Pathogen Genomics in Public HeAlth Surveillance Evaluation (PG-PHASE) Framework to guide examination of the use of WGS in public health surveillance and disease control. We illustrate the use of this framework with three pathogens as case studies: Listeria monocytogenes, Mycobacterium tuberculosis and SARS-CoV-2. RESULTS: The framework utilises an adaptable whole-of-system approach towards understanding how interconnected elements in the public health application of pathogen genomics contribute to public health processes and outcomes. The three phases of the PG-PHASE Framework are designed to support understanding of WGS laboratory processes, analysis, reporting and data sharing, and how genomic data are utilised in public health practice across all stages, from the decision to send an isolate or sample for sequencing to the use of sequence data in public health surveillance, investigation and decision-making. Importantly, the phases can be used separately or in conjunction, depending on the need of the evaluator. Subsequent to conducting evaluation underpinned by the framework, avenues may be developed for strategic investment or interventions to improve utilisation of whole genome sequencing. CONCLUSIONS: Comprehensive evaluation is critical to support health departments, public health laboratories and other stakeholders to successfully incorporate microbial genomics into public health practice. The PG-PHASE Framework aims to assist public health laboratories, health departments and authorities who are either considering transitioning to whole genome sequencing or intending to assess the integration of WGS in public health practice, including the capacity to detect and respond to outbreaks and associated costs, challenges and facilitators in the utilisation of microbial genomics and public health impacts.
  • Item
    Thumbnail Image
    Systematic analysis of key parameters for genomics-based real-time detection and tracking of multidrug-resistant bacteria
    Gorrie, C ; Da Silva, AG ; Ingle, D ; Higgs, C ; Seemann, T ; Stinear, T ; Williamson, D ; Kwong, J ; Grayson, L ; Sherry, N ; Howden, B ( 2020-09-25)
    Background: Pairwise single nucleotide polymorphisms (SNPs) are a cornerstone for genomic approaches to multidrug-resistant organisms (MDROs) transmission inference in hospitals. However, the impact of key analysis parameters on these inferences has not been systematically analysed. Methods: We conducted a multi-hospital 15-month prospective study, sequencing 1537 MDRO genomes for comparison; methicillin-resistant Staphylococcus aureus , vancomycin-resistant Enterococcus faecium , and extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae . We systematically assessed the impact of sample and reference genome diversity, masking of prophage and regions of recombination, cumulative genome analysis compared to a three-month sliding-window, and the comparative effects each of these had when applying a SNP threshold for inferring likely transmission (≤15 SNPs for S. aureus , ≤25 for other species). Findings: Across the species, using a reference genome of the same sequence type provided a greater degree of pairwise SNP resolution, compared to species and outgroup-reference alignments that typically resulted in inflated SNP distances and the possibility of missed transmission events. Omitting prophage regions had minimal impacts, however, omitting recombination regions a highly variable effect, often inflating the number of closely related pairs. Estimating pairwise SNP distances was more consistent using a sliding-window than a cumulative approach. Interpretation: The use of a closely-related reference genome, without masking of prophage or recombination regions, and a sliding-window for isolate inclusion is best for accurate and consistent MDRO transmission inference. The increased stability and resolution provided by these approaches means SNP thresholds for putative transmission inference can be more reliably applied among diverse MDROs. Funding: This work was supported by the Melbourne Genomics Health Alliance (funded by the State Government of Victoria, Department of Health and Human Services, and the ten member organizations); an National Health and Medical Research Council (Australia) Partnership grant (GNT1149991) and individual grants from National Health and Medical Research Council (Australia) to NLS (GNT1093468), JCK (GNT1008549) and BPH (GNT1105905).
  • Item
    Thumbnail Image
    Key parameters for genomics-based real-time detection and tracking of multidrug-resistant bacteria: a systematic analysis
    Gorrie, CL ; Da Silva, AG ; Ingle, DJ ; Higgs, C ; Seemann, T ; Stinear, TP ; Williamson, DA ; Kwong, JC ; Grayson, ML ; Sherry, NL ; Howden, BP (ELSEVIER, 2021-11)
    BACKGROUND: Pairwise single nucleotide polymorphisms (SNPs) are a cornerstone of genomic approaches to the inference of transmission of multidrug-resistant (MDR) organisms in hospitals. However, the impact of many key analytical approaches on these inferences has not yet been systematically assessed. This study aims to make such a systematic assessment. METHODS: We conducted a 15-month prospective study (2-month pilot phase, 13-month implementation phase), across four hospital networks including eight hospitals in Melbourne, VIC, Australia. Patient clinical and screening samples containing one or more isolates of meticillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae were collected and underwent whole genome sequencing. Using the genome data from the top four most numerous sequence types from each species, 16 in total, we systematically assessed the: (1) impact of sample and reference genome diversity through multiple core genome alignments using different data subsets and reference genomes, (2) effect of masking of prophage and regions of recombination in the core genome alignments by assessing SNP distances before and after masking, (3) differences between a cumulative versus a 3-month sliding-window approach to sample genome inclusion in the dataset over time, and (4) the comparative effects each of these approaches had when applying a previously defined SNP threshold for inferring likely transmission. FINDINGS: 2275 samples were collected (397 during the pilot phase from April 4 to June 18, 2017; 1878 during the implementation phase from Oct 30, 2017, to Nov 30, 2018) from 1870 patients. Of these 2275 samples, 1537 were identified as arising from the four most numerous sequence types from each of the four target species of MDR organisms in this dataset (16 sequence types in total: S aureus ST5, ST22, ST45, and ST93; E faecium ST80, ST203, ST1421, and ST1424; K pneumoniae ST15, ST17, ST307, and ST323; and E coli ST38, ST131, ST648, and ST1193). Across the species, using a reference genome of the same sequence type provided a greater degree of pairwise SNP resolution, compared with species and outgroup-reference alignments that mostly resulted in inflated SNP distances and the possibility of missed transmission events. Omitting prophage regions had minimal effect; however, omitting recombination regions had a highly variable effect, often inflating the number of closely related pairs. Estimated SNP distances between isolate pairs over time were more consistent using a sliding-window than a cumulative approach. INTERPRETATION: We propose that the use of a closely related reference genome, without masking of prophage or recombination regions, and of a sliding-window approach for isolate inclusion is best for accurate and consistent MDR organism transmission inference, when using core genome alignments and SNP thresholds. These approaches provide increased stability and resolution, so SNP thresholds can be more reliably applied for putative transmission inference among diverse MDR organisms, reducing the chance of incorrectly inferring the presence or absence of close genetic relatedness and, therefore, transmission. The establishment of a broadly applicable and standardised approach, as proposed here, is necessary to implement widespread prospective genomic surveillance for MDR organism transmission. FUNDING: Melbourne Genomics Health Alliance, and National Health and Medical Research Council of Australia.