Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Strain-Dependent Differences in Bone Development, Myeloid Hyperplasia, Morbidity and Mortality in Ptpn2-Deficient Mice
    Wiede, F ; Chew, SH ; van Vliet, C ; Poulton, IJ ; Kyparissoudis, K ; Sasmono, T ; Loh, K ; Tremblay, ML ; Godfrey, DI ; Sims, NA ; Tiganis, T ; Kanellopoulos, J (PUBLIC LIBRARY SCIENCE, 2012-05-08)
    Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2) have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2(ex2-/ex2-) mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2(-/-) mice (BALB/c-129SJ) generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2(ex2-/ex2-) mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2(-/-) (BALB/c) mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea) evident in Ptpn2(-/-) (BALB/c) mice were not detected in Ptpn2(ex2-/ex2-) mice. At 14 days of age, bone development was delayed in Ptpn2(-/-) (BALB/c) mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2(ex2-/ex2-) mice. Ptpn2(ex2-/ex2-) mice had defects in erythropoiesis and B cell development as evident in Ptpn2(-/-) (BALB/c) mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2(-/-) (BALB/c) mice. Moreover, thymic atrophy, another feature of Ptpn2(-/-) (BALB/c) mice, was delayed in Ptpn2(ex2-/ex2-) mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2(-/-) (BALB/c) mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2(ex2-/ex2-) mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent.
  • Item
    No Preview Available
    ZBTB7B (Th-POK) Regulates the Development of IL-17-Producing CD1d-Restricted Mouse NKT Cells
    Enders, A ; Stankovic, S ; Teh, C ; Uldrich, AP ; Yabas, M ; Juelich, T ; Altin, JA ; Frankenreiter, S ; Bergmann, H ; Roots, CM ; Kyparissoudis, K ; Goodnow, CC ; Godfrey, DI (AMER ASSOC IMMUNOLOGISTS, 2012-12-01)
    CD1d-dependent NKT cells represent a heterogeneous family of effector T cells including CD4(+)CD8(-) and CD4(-)CD8(-) subsets that respond to glycolipid Ags with rapid and potent cytokine production. NKT cell development is regulated by a unique combination of factors, however very little is known about factors that control the development of NKT subsets. In this study, we analyze a novel mouse strain (helpless) with a mis-sense mutation in the BTB-POZ domain of ZBTB7B and demonstrate that this mutation has dramatic, intrinsic effects on development of NKT cell subsets. Although NKT cell numbers are similar in Zbtb7b mutant mice, these cells are hyperproliferative and most lack CD4 and instead express CD8. Moreover, the majority of ZBTB7B mutant NKT cells in the thymus are retinoic acid-related orphan receptor γt positive, and a high frequency produce IL-17 while very few produce IFN-γ or other cytokines, sharply contrasting the profile of normal NKT cells. Mice heterozygous for the helpless mutation also have reduced numbers of CD4(+) NKT cells and increased production of IL-17 without an increase in CD8(+) cells, suggesting that ZBTB7B acts at multiple stages of NKT cell development. These results reveal ZBTB7B as a critical factor genetically predetermining the balance of effector subsets within the NKT cell population.