Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    No Preview Available
    Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19
    Zhang, W ; Clemens, EB ; Kedzierski, L ; Chua, BY ; Mayo, M ; Lonzi, C ; Hinchcliff, A ; Rigas, V ; Middleton, BF ; Binks, P ; Rowntree, LC ; Allen, LF ; Tan, H-X ; Petersen, J ; Chaurasia, P ; Krammer, F ; Wheatley, AK ; Kent, SJ ; Rossjohn, J ; Miller, A ; Lynar, S ; Nelson, J ; Nguyen, THO ; Davies, J ; Kedzierska, K (WILEY, 2023-11)
    Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
  • Item
    No Preview Available
    Robust immunity to influenza vaccination in haematopoietic stem cell transplant recipients following reconstitution of humoral and adaptive immunity
    Zhang, W ; Rowntree, LC ; Muttucumaru, R ; Damelang, T ; Aban, M ; Hurt, AC ; Auladell, M ; Esterbauer, R ; Wines, B ; Hogarth, M ; Turner, SJ ; Wheatley, AK ; Kent, SJ ; Patil, S ; Avery, S ; Morrissey, O ; Chung, AW ; Koutsakos, M ; Nguyen, THO ; Cheng, AC ; Kotsimbos, TC ; Kedzierska, K (WILEY, 2023)
    OBJECTIVES: Influenza causes significant morbidity and mortality, especially in high-risk populations. Although current vaccination regimens are the best method to combat annual influenza disease, vaccine efficacy can be low in high-risk groups, such as haematopoietic stem cell transplant (HSCT) recipients. METHODS: We comprehensively assessed humoral immunity, antibody landscapes, systems serology and influenza-specific B-cell responses, together with their phenotypes and isotypes, to the inactivated influenza vaccine (IIV) in HSCT recipients in comparison to healthy controls. RESULTS: Inactivated influenza vaccine significantly increased haemagglutination inhibition (HAI) titres in HSCT recipients, similar to healthy controls. Systems serology revealed increased IgG1 and IgG3 antibody levels towards the haemagglutinin (HA) head, but not to neuraminidase, nucleoprotein or HA stem. IIV also increased frequencies of total, IgG class-switched and CD21loCD27+ influenza-specific B cells, determined by HA probes and flow cytometry. Strikingly, 40% of HSCT recipients had markedly higher antibody responses towards A/H3N2 vaccine strain than healthy controls and showed cross-reactivity to antigenically drifted A/H3N2 strains by antibody landscape analysis. These superior humoral responses were associated with a greater time interval after HSCT, while multivariant analyses revealed the importance of pre-existing immune memory. Conversely, in HSCT recipients who did not respond to the first dose, the second IIV dose did not greatly improve their humoral response, although 50% of second-dose patients reached a seroprotective HAI titre for at least one of vaccine strains. CONCLUSIONS: Our study demonstrates efficient, although time-dependent, immune responses to IIV in HSCT recipients, and provides insights into influenza vaccination strategies targeted to immunocompromised high-risk groups.
  • Item
    No Preview Available
    Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities
    Zhang, W ; Kedzierski, L ; Chua, BY ; Mayo, M ; Lonzi, C ; Rigas, V ; Middleton, BF ; McQuilten, HA ; Rowntree, LC ; Allen, LF ; Purcell, RA ; Tan, H-X ; Petersen, J ; Chaurasia, P ; Mordant, F ; Pogorelyy, MV ; Minervina, AA ; Crawford, JC ; Perkins, GB ; Zhang, E ; Gras, S ; Clemens, EB ; Juno, JA ; Audsley, J ; Khoury, DS ; Holmes, NE ; Thevarajan, I ; Subbarao, K ; Krammer, F ; Cheng, AC ; Davenport, MP ; Grubor-Bauk, B ; Coates, PT ; Christensen, B ; Thomas, PG ; Wheatley, AK ; Kent, SJ ; Rossjohn, J ; Chung, AW ; Boffa, J ; Miller, A ; Lynar, S ; Nelson, J ; Nguyen, THO ; Davies, J ; Kedzierska, K (NATURE PORTFOLIO, 2023-06)
    High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
  • Item
    No Preview Available
    SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses
    Koutsakos, M ; Reynaldi, A ; Lee, WS ; Nguyen, J ; Amarasena, T ; Taiaroa, G ; Kinsella, P ; Liew, KC ; Tran, T ; Kent, HE ; Tan, H-X ; Rowntree, LC ; Nguyen, THO ; Thomas, PG ; Kedzierska, K ; Petersen, J ; Rossjohn, J ; Williamson, DA ; Khoury, D ; Davenport, MP ; Kent, SJ ; Wheatley, AK ; Juno, JA (CELL PRESS, 2023-04-11)
    Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.
  • Item
    No Preview Available
    Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and ?? T cell perturbations
    Habel, JR ; Chua, BY ; Kedzierski, L ; Selva, KJ ; Damelang, T ; Haycroft, ER ; Nguyen, THO ; Koay, H-F ; Nicholson, S ; McQuilten, HA ; Jia, X ; Allen, LF ; Hensen, L ; Zhang, W ; Sandt, CEVD ; Neil, JA ; Pragastis, K ; Lau, JSY ; Jumarang, J ; Allen, EK ; Amanant, F ; Krammer, F ; Wragg, KM ; Juno, JA ; Wheatley, AK ; Tan, H-X ; Pell, G ; Walker, S ; Audsley, J ; Reynaldi, A ; Thevarajan, I ; Denholm, JT ; Subbarao, K ; Davenport, MP ; Hogarth, PM ; Godfrey, DI ; Cheng, AC ; Tong, SYC ; Bond, K ; Williamson, DA ; McMahon, JH ; Thomas, PG ; Pannaraj, PS ; James, F ; Holmes, NE ; Smibert, OC ; Trubiano, JA ; Gordon, CL ; Chung, AW ; Whitehead, CL ; Kent, SJ ; Lappas, M ; Rowntree, LC ; Kedzierska, K (AMER SOC CLINICAL INVESTIGATION INC, 2023-03-22)
    Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
  • Item
    No Preview Available
    Robust SARS-CoV-2 T cell responses with common TCRab motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells
    Nguyen, THO ; Rowntree, LC ; Allen, LF ; Chua, BY ; Kedzierski, L ; Lim, C ; Lasica, M ; Tennakoon, GS ; Saunders, NR ; Crane, M ; Chee, L ; Seymour, JF ; Anderson, MA ; Whitechurch, A ; Clemens, EB ; Zhang, W ; Chang, SY ; Habel, JR ; Jia, X ; McQuilten, HA ; Minervina, AA ; Pogorelyy, MV ; Chaurasia, P ; Petersen, J ; Menon, T ; Hensen, L ; Neil, JA ; Mordant, FL ; Tan, H-X ; Cabug, AF ; Wheatley, AK ; Kent, SJ ; Subbarao, K ; Karapanagiotidis, T ; Huang, H ; Vo, LK ; Cain, NL ; Nicholson, S ; Krammer, F ; Gibney, G ; James, F ; Trevillyan, JM ; Trubiano, JA ; Mitchell, J ; Christensen, B ; Bond, KA ; Williamson, DA ; Rossjohn, J ; Crawford, JC ; Thomas, PG ; Thursky, KA ; Slavin, MA ; Tam, CS ; Teh, BW ; Kedzierska, K (CELL PRESS, 2023-04-18)
    Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
  • Item
    Thumbnail Image
    Prospective comprehensive profiling of immune responses to COVID-19 vaccination in patients on zanubrutinib therapy.
    Nguyen, THO ; Lim, C ; Lasica, M ; Whitechurch, A ; Tennakoon, S ; Saunders, NR ; Allen, LF ; Rowntree, LC ; Chua, BY ; Kedzierski, L ; Tan, H-X ; Wheatley, AK ; Kent, SJ ; Karapanagiotidis, T ; Nicholson, S ; Williamson, DA ; Slavin, MA ; Tam, CS ; Kedzierska, K ; Teh, BW (Wiley, 2023-02)
    Zanubrutinib-treated and treatment-naïve patients with chronic lymphocytic leukaemia (CLL) or Waldenstrom's macroglobulinaemia were recruited in this prospective study to comprehensively profile humoral and cellular immune responses to COVID-19 vaccination. Overall, 45 patients (median 72 years old) were recruited; the majority were male (71%), had CLL (76%) and were on zanubrutinib (78%). Seroconversion rates were 65% and 77% following two and three doses, respectively. CD4+ and CD8+ T-cell response rates increased with third dose. In zanubrutinib-treated patients, 86% developed either a humoral or cellular response. Patients on zanubrutinib developed substantial immune responses following two COVID-19 vaccine doses, which further improved following a third dose.
  • Item
    Thumbnail Image
    Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques
    Chua, BY ; Sekiya, T ; Koutsakos, M ; Nomura, N ; Rowntree, LC ; Nguyen, THO ; McQuilten, HA ; Ohno, M ; Ohara, Y ; Nishimura, T ; Endo, M ; Itoh, Y ; Habel, JR ; Selva, KJ ; Wheatley, AK ; Wines, BD ; Hogarth, PM ; Kent, SJ ; Chung, AW ; Jackson, DC ; Brown, LE ; Shingai, M ; Kedzierska, K ; Kida, H ; Klein, SL (PUBLIC LIBRARY SCIENCE, 2022-10)
    Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.
  • Item
    Thumbnail Image
    SARS-CoV-2-specific T cell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection
    Rowntree, LC ; Nguyen, THO ; Kedzierski, L ; Neeland, MR ; Petersen, J ; Crawford, JC ; Allen, LF ; Clemens, EB ; Chua, B ; McQuilten, HA ; Minervina, AA ; Pogorelyy, M ; Chaurasia, P ; Tan, H-X ; Wheatley, AK ; Jia, X ; Amanat, F ; Krammer, F ; Allen, EK ; Sonda, S ; Flanagan, KL ; Jumarang, J ; Pannaraj, PS ; Licciardi, P ; Kent, SJ ; Bond, KA ; Williamson, DA ; Rossjohn, J ; Thomas, PG ; Tosif, S ; Crawford, NW ; van de Sandt, CE ; Kedzierska, K (CELL PRESS, 2022-07-12)
    As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαβ repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαβ motifs in unvaccinated seroconverted children after their first virus encounter.
  • Item
    Thumbnail Image
    Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine
    Ju, Y ; Lee, WS ; Pilkington, EH ; Kelly, HG ; Li, S ; Selva, KJ ; Wragg, KM ; Subbarao, K ; Nguyen, THO ; Rowntree, LC ; Allen, LF ; Bond, K ; Williamson, DA ; Truong, NP ; Plebanski, M ; Kedzierska, K ; Mahanty, S ; Chung, AW ; Caruso, F ; Wheatley, AK ; Juno, JA ; Kent, SJ (AMER CHEMICAL SOC, 2022-08-23)
    Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.