Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Molecular control of B-cell homeostasis in health and malignancy
    Garcillan, B ; Figgett, WA ; Infantino, S ; Lim, EX ; Mackay, F (WILEY, 2018-05)
    Altered B-cell homeostasis underlies a wide range of pathologies, from cancers to autoimmunity and immunodeficiency. The molecular safeguards against those disorders, which also allow effective immune responses, are therefore particularly critical. Here, we review recent findings detailing the fine control of B-cell homeostasis, during B-cell development, maturation in the periphery and during activation and differentiation into antibody-producing cells.
  • Item
    No Preview Available
    The BAFF/APRIL system: Emerging functions beyond B cell biology and autoimmunity
    Vincent, FB ; Saulep-Easton, D ; Figgett, WA ; Fairfax, KA ; Mackay, F (ELSEVIER SCI LTD, 2013-06)
    The BAFF system plays a key role in the development of autoimmunity, especially in systemic lupus erythematosus (SLE). This often leads to the assumption that BAFF is mostly a B cell factor with a specific role in autoimmunity. Focus on BAFF and autoimmunity, driven by pharmaceutical successes with the recent approval of a novel targeted therapy Belimumab, has relegated other potential roles of BAFF to the background. Far from being SLE-specific, the BAFF system has a much broader relevance in infection, cancer and allergy. In this review, we provide the latest views on additional roles of the BAFF system in health and diseases, as well as an update on BAFF and autoimmunity, with particular focus on current clinical trials.
  • Item
    No Preview Available
    Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia
    Saulep-Easton, D ; Vincent, FB ; Le Page, M ; Wei, A ; Ting, SB ; Croce, CM ; Tam, C ; Mackay, F (NATURE PUBLISHING GROUP, 2014-10)
    Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5(+)CD19(+) B cells in the peripheral blood, and in primary and secondary lymphoid organs. A major complication associated with CLL is severe recurrent infections, which are often fatal. Vulnerability to infection is due to a wide variety of immunological defects, yet the initiating events of immunodeficiency in CLL are unclear. Using CLL patient samples and a mouse model of CLL, we have discovered that plasmacytoid dendritic cells (pDCs), which underpin the activity of effector immune cells critical for anti-viral immunity and anti-tumor responses, are reduced in number and functionally impaired in progressive CLL. As a result, the levels of interferon alpha (IFNα) production, a cytokine critical for immunity, are markedly reduced. Lower pDC numbers with impaired IFNα production was due to the decreased expression of FMS-like tyrosine kinase 3 receptor (Flt3) and Toll-like receptor 9 (TLR9), respectively. Reduced Flt3 expression was reversed using inhibitors of TGF-β and TNF, an effect correlating with a reduction in tumor load. Defects in pDC numbers and function offer new insight into mechanisms underpinning the profound immunodeficiency affecting CLL patients and provide a potentially novel avenue for restoring immunocompetency in CLL.
  • Item
    Thumbnail Image
    Clinical associations of serum interleukin-17 in systemic lupus erythematosus
    Vincent, FB ; Northcott, M ; Hoi, A ; Mackay, F ; Morand, EF (BMC, 2013)
    INTRODUCTION: Serum interleukin (IL)-17 concentrations have been reported to be increased in systemic lupus erythematosus (SLE), but associations with clinical characteristics are not well understood. We characterized clinical associations of serum IL-17 in SLE. METHODS: We quantified IL-17 in serum samples from 98 SLE patients studied cross-sectionally, and in 246 samples from 75 of these patients followed longitudinally over two years. Disease activity was recorded using the SLE Disease Activity Index (SLEDAI)-2k. Serum IL-6, migration inhibitory factor (MIF), and B cell activating factor of the tumour necrosis factor family (BAFF) were also measured in these samples. RESULTS: Serum IL-17 levels were significantly higher in SLE patients compared to healthy donors (P <0.0001). No correlation was observed between serum IL-17 and SLEDAI-2k, at baseline or during longitudinal follow-up. However, we observed that SLEDAI-2k was positively correlated with IL-17/IL-6 ratio. Serum IL-17 was significantly increased in SLE patients with central nervous system (CNS) disease (P = 0.0298). A strong correlation was observed between serum IL-17 and IL-6 (r = 0.62, P <0.0001), and this relationship was observed regardless of disease activity and persisted when integrating cytokine levels over the period observed (r = 0.66, P <0.0001). A strong correlation of serum IL-17 was also observed with serum BAFF (r = 0.64, P <0.0001), and MIF (r = 0.36, P = 0.0016). CONCLUSIONS: Serum IL-17 concentration correlates poorly with SLE disease activity but is significantly elevated in patients with CNS disease. IL-17/IL-6 ratio may be more useful than IL-17 or IL-6 alone to characterize Th17-driven disease, such as SLE. The association of other cytokines with serum IL-17 suggests that IL-17 may drive activation of diverse immune pathways in SLE.
  • Item
    Thumbnail Image
    B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A
    Bergmann, H ; Yabas, M ; Short, A ; Miosge, L ; Barthel, N ; Teh, CE ; Roots, CM ; Bull, KR ; Jeelall, Y ; Horikawa, K ; Whittle, B ; Balakishnan, B ; Sjollema, G ; Bertram, EM ; Mackay, F ; Rimmer, AJ ; Cornall, RJ ; Field, MA ; Andrews, TD ; Goodnow, CC ; Enders, A (ROCKEFELLER UNIV PRESS, 2013-01-14)
    Druggable proteins required for B lymphocyte survival and immune responses are an emerging source of new treatments for autoimmunity and lymphoid malignancy. In this study, we show that mice with an inactivating mutation in the intramembrane protease signal peptide peptidase-like 2A (SPPL2A) unexpectedly exhibit profound humoral immunodeficiency and lack mature B cell subsets, mirroring deficiency of the cytokine B cell-activating factor (BAFF). Accumulation of Sppl2a-deficient B cells was rescued by overexpression of the BAFF-induced survival protein B cell lymphoma 2 (BCL2) but not BAFF and was distinguished by low surface BAFF receptor and IgM and IgD B cell receptors. CD8-negative dendritic cells were also greatly decreased. SPPL2A deficiency blocked the proteolytic processing of CD74 MHC II invariant chain in both cell types, causing dramatic build-up of the p8 product of Cathepsin S and interfering with earlier steps in CD74 endosomal retention and processing. The findings illuminate an important role for the final step in the CD74-MHC II pathway and a new target for protease inhibitor treatment of B cell diseases.
  • Item
    Thumbnail Image
    CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney
    Haege, S ; Einer, C ; Thiele, S ; Mueller, W ; Nietzsche, S ; Lupp, A ; Mackay, F ; Schulz, S ; Stumm, R ; Schmidt, EE (PUBLIC LIBRARY SCIENCE, 2012-08-06)
    BACKGROUND: The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. METHODOLOGY/PRINCIPAL FINDINGS: We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. CONCLUSIONS/SIGNIFICANCE: We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.
  • Item
    Thumbnail Image
    Depletion of B2 but Not B1a B Cells in BAFF Receptor-Deficient ApoE-/- Mice Attenuates Atherosclerosis by Potently Ameliorating Arterial Inflammation
    Kyaw, T ; Tay, C ; Hosseini, H ; Kanellakis, P ; Gadowski, T ; MacKay, F ; Tipping, P ; Bobik, A ; Toh, B-H ; Schmidt, HHHW (PUBLIC LIBRARY SCIENCE, 2012-01-04)
    We have recently identified conventional B2 cells as atherogenic and B1a cells as atheroprotective in hypercholesterolemic ApoE(-/-) mice. Here, we examined the development of atherosclerosis in BAFF-R deficient ApoE(-/-) mice because B2 cells but not B1a cells are selectively depleted in BAFF-R deficient mice. We fed BAFF-R(-/-) ApoE(-/-) (BaffR.ApoE DKO) and BAFF-R(+/+)ApoE(-/-) (ApoE KO) mice a high fat diet (HFD) for 8-weeks. B2 cells were significantly reduced by 82%, 81%, 94%, 72% in blood, peritoneal fluid, spleen and peripheral lymph nodes respectively; while B1a cells and non-B lymphocytes were unaffected. Aortic atherosclerotic lesions assessed by oil red-O stained-lipid accumulation and CD68+ macrophage accumulation were decreased by 44% and 50% respectively. B cells were absent in atherosclerotic lesions of BaffR.ApoE DKO mice as were IgG1 and IgG2a immunoglobulins produced by B2 cells, despite low but measurable numbers of B2 cells and IgG1 and IgG2a immunoglobulin concentrations in plasma. Plasma IgM and IgM deposits in atherosclerotic lesions were also reduced. BAFF-R deficiency in ApoE(-/-) mice was also associated with a reduced expression of VCAM-1 and fewer macrophages, dendritic cells, CD4+ and CD8+ T cell infiltrates and PCNA+ cells in lesions. The expression of proinflammatory cytokines, TNF-α, IL1-β and proinflammatory chemokine MCP-1 was also reduced. Body weight and plasma cholesterols were unaffected in BaffR.ApoE DKO mice. Our data indicate that B2 cells are important contributors to the development of atherosclerosis and that targeting the BAFF-R to specifically reduce atherogenic B2 cell numbers while preserving atheroprotective B1a cell numbers may be a potential therapeutic strategy to reduce atherosclerosis by potently reducing arterial inflammation.
  • Item
    Thumbnail Image
    NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells
    de Valle, E ; Grigoriadis, G ; O'Reilly, LA ; Willis, SN ; Maxwell, MJ ; Corcoran, LM ; Tsantikos, E ; Cornish, JKS ; Fairfax, KA ; Vasanthakumar, A ; Febbraio, MA ; Hibbs, ML ; Pellegrini, M ; Banerjee, A ; Hodgkin, PD ; Kallies, A ; Mackay, F ; Strasser, A ; Gerondakis, S ; Gugasyan, R (ROCKEFELLER UNIV PRESS, 2016-04-04)
    We examined the role of NFκB1 in the homeostasis and function of peripheral follicular (Fo) B cells. Aging mice lacking NFκB1 (Nfκb1(-/-)) develop lymphoproliferative and multiorgan autoimmune disease attributed in large part to the deregulated activity of Nfκb1(-/-)Fo B cells that produce excessive levels of the proinflammatory cytokine interleukin 6 (IL-6). Despite enhanced germinal center (GC) B cell differentiation, the formation of GC structures was severely disrupted in the Nfκb1(-/-)mice. Bone marrow chimeric mice revealed that the Fo B cell-intrinsic loss of NFκB1 led to the spontaneous generation of GC B cells. This was primarily the result of an increase in IL-6 levels, which promotes the differentiation of Fo helper CD4(+)T cells and acts in an autocrine manner to reduce antigen receptor and toll-like receptor activation thresholds in a population of proliferating IgM(+)Nfκb1(-/-)Fo B cells. We demonstrate that p50-NFκB1 represses Il-6 transcription in Fo B cells, with the loss of NFκB1 also resulting in the uncontrolled RELA-driven transcription of Il-6.Collectively, our findings identify a previously unrecognized role for NFκB1 in preventing multiorgan autoimmunity through its negative regulation of Il-6 gene expression in Fo B cells.
  • Item
    Thumbnail Image
    Analysis of microRNA turnover in mammalian cells following Dicer1 ablation
    Gantier, MP ; McCoy, CE ; Rusinova, I ; Saulep, D ; Wang, D ; Xu, D ; Irving, AT ; Behlke, MA ; Hertzog, PJ ; Mackay, F ; Williams, BRG (OXFORD UNIV PRESS, 2011-07)
    Although microRNAs (miRNAs) are key regulators of gene expression, little is known of their overall persistence in the cell following processing. Characterization of such persistence is key to the full appreciation of their regulatory roles. Accordingly, we measured miRNA decay rates in mouse embryonic fibroblasts following loss of Dicer1 enzymatic activity. The results confirm the inherent stability of miRNAs, the intracellular levels of which were mostly affected by cell division. Using the decay rates of a panel of six miRNAs representative of the global trend of miRNA decay, we establish a mathematical model of miRNA turnover and determine an average miRNA half-life of 119 h (i.e. ∼5 days). In addition, we demonstrate that select miRNAs turnover more rapidly than others. This study constitutes, to our knowledge, the first in-depth characterization of miRNA decay in mammalian cells. Our findings indicate that miRNAs are up to 10× more stable than messenger RNA and support the existence of novel mechanism(s) controlling selective miRNA cellular concentration and function.
  • Item
    Thumbnail Image
    The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology
    Hardy, CL ; King, SJ ; Mifsud, NA ; Hedger, MP ; Phillips, DJ ; Mackay, F ; de Kretser, DM ; Wilson, JW ; Rolland, JM ; O'Hehir, RE (WILEY, 2015-07)
    Cystic fibrosis (CF) is the most common life-limiting genetically acquired respiratory disorder. Patients with CF have thick mucus obstructing the airways leading to recurrent infections, bronchiectasis and neutrophilic airway inflammation culminating in deteriorating lung function. Current management targets airway infection and mucus clearance, but despite recent advances in care, life expectancy is still only 40 years. We investigated whether activin A is elevated in CF lung disease and whether inhibiting activin A with its natural antagonist follistatin retards lung disease progression. We measured serum activin A levels, lung function and nutritional status in CF patients. We studied the effect of activin A on CF lung pathogenesis by treating newborn CF transgenic mice (β-ENaC) intranasally with the natural activin A antagonist follistatin. Activin A levels were elevated in the serum of adult CF patients, and correlated inversely with lung function and body mass index. Follistatin treatment of newborn β-ENaC mice, noted for respiratory pathology mimicking human CF, decreased the airway activin A levels and key features of CF lung disease including mucus hypersecretion, airway neutrophilia and levels of mediators that regulate inflammation and chemotaxis. Follistatin treatment also increased body weight and survival of β-ENaC mice, with no evidence of local or systemic toxicity. Our findings demonstrate that activin A levels are elevated in CF and provide proof-of-concept for the use of the activin A antagonist, follistatin, as a therapeutic in the long-term management of lung disease in CF patients.