Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Understanding mucosal responsiveness: lessons from enteric bacterial pathogens
    Simmons, CP ; Clare, S ; Dougan, G (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2001-06)
    Mucosal immune responses must discriminate between commensal flora within the lumen and potential pathogens. These responses are highly adapted to induce protection without excessive inflammation. The balances that regulate mucosal immune and inflammatory responses have to be understood if effective mucosal immunity is to be induced through local immunization. This review will summarize some of the lessons learnt from studies of antigens derived from enteric bacterial pathogens and discuss how the gastrointestinal epithelia can 'fight back' when it encounters pathogens.
  • Item
    Thumbnail Image
    Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium
    Ghaem-Maghami, M ; Simmons, CP ; Daniell, S ; Pizza, M ; Lewis, D ; Frankel, G ; Dougan, G ; Finlay, BB (AMER SOC MICROBIOLOGY, 2001-09)
    The formation of attaching and effacing (A/E) lesions on gut enterocytes is central to the pathogenesis of enterohemorrhagic (EHEC) Escherichia coli, enteropathogenic E. coli (EPEC), and the rodent pathogen Citrobacter rodentium. Genes encoding A/E lesion formation map to a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Here we show that the LEE-encoded proteins EspA, EspB, Tir, and intimin are the targets of long-lived humoral immune responses in C. rodentium-infected mice. Mice infected with C. rodentium developed robust acquired immunity and were resistant to reinfection with wild-type C. rodentium or a C. rodentium derivative, DBS255(pCVD438), which expressed intimin derived from EPEC strain E2348/69. The receptor-binding domain of intimin polypeptides is located within the carboxy-terminal 280 amino acids (Int280). Mucosal and systemic vaccination regimens using enterotoxin-based adjuvants were employed to elicit immune responses to recombinant Int280alpha from EPEC strain E2348/69. Mice vaccinated subcutaneously with Int280alpha, in the absence of adjuvant, were significantly more resistant to oral challenge with DBS255(pCVD438) but not with wild-type C. rodentium. This type-specific immunity could not be overcome by employing an exposed, highly conserved domain of intimin (Int388-667) as a vaccine. These results show that anti-intimin immune responses can modulate the outcome of a C. rodentium infection and support the use of intimin as a component of a type-specific EPEC or EHEC vaccine.
  • Item
    Thumbnail Image
    Site-directed mutagenesis of intimin α modulates intimin-mediated tissue tropism and host specificity
    Reece, S ; Simmons, CP ; Fitzhenry, RJ ; Matthews, S ; Phillips, AD ; Dougan, G ; Frankel, G (WILEY, 2001-04)
    The hallmark of enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherchia coli adhesion to host cells is intimate attachment leading to the formation of distinctive 'attaching and effacing' lesions. This event is mediated, in part, by binding of the bacterial adhesion molecule intimin to a second bacterial protein, Tir, delivered by a type III secretion system into the host cell plasma membrane. The receptor-binding activity of intimin is localized to the C-terminal 280 amino acids (Int280) and at least five distinct intimin types (alpha, beta, gamma, delta and epsilon) have been identified thus far. In addition to binding to Tir, intimin can also bind to a component encoded by the host. The consequence of latter intimin-binding activity may determine tissue tropism and host specificity. In this study we selected three amino acids in intimin, which are implicated in Tir binding, for site-directed mutagenesis. We used the yeast two-hybrid system and gel overlays to study intimin-Tir protein interaction. In addition, the biological consequences of the mutagenesis was tested using a number of infection models (cultured epithelial cells, human intestinal explants and a mouse model). We report that while an I237/897A substitution (positions numbered according to Int280alpha/whole intimin alpha) in intimin alpha did not have any affect on its biological activity, a T255/914A substitution attenuated intimin activity in vivo. In contrast, the mutation V252/911A affected tissue targeting in the human intestinal explant model and attenuated the biological activity of intimin in the mouse model. This study provides the first clues of the molecular basis of how intimin mediates tissue tropism and host specificity.
  • Item
    Thumbnail Image
    Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective, immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses
    Simmons, CP ; Hussell, T ; Sparer, T ; Walzl, G ; Openshaw, P ; Dougan, G (AMER ASSOC IMMUNOLOGISTS, 2001-01-15)
    In an effort to develop a safe and effective vaccine against respiratory syncytial virus (RSV), we used Escherichia coli heat-labile toxin (LT), and LTK63 (an LT mutant devoid of ADP-ribosyltransferase activity) to elicit murine CD8(+) CTL responses to an intranasally codelivered CTL peptide from the second matrix protein (M2) of RSV. M2(82-90)-specific CD8(+) T cells were detected by IFN-gamma enzyme-linked immunospot and (51)Cr release assay in local and systemic lymph nodes, and their induction was dependent on the use of a mucosal adjuvant. CTL elicited by peptide immunization afforded protection against RSV challenge, but also enhanced weight loss. CTL-mediated viral clearance was not dependent on IFN-gamma since depletion using specific mAb during RSV challenge did not affect cellular recruitment or viral clearance. Depletion of IFN-gamma did, however, reduce the concentration of TNF detected in lung homogenates of challenged mice and largely prevented the weight loss associated with CTL-mediated viral clearance. Mice primed with the attachment glycoprotein (G) develop lung eosinophilia after intranasal RSV challenge. Mucosal peptide vaccination reduced pulmonary eosinophilia in mice subsequently immunized with G and challenged with RSV. These studies emphasize that protective and immunoregulatory CD8(+) CTL responses can be mucosally elicited using enterotoxin-based mucosal adjuvants but that resistance against viral infection may be accompanied by enhanced disease.
  • Item
    Thumbnail Image
    Immunomodulation using bacterialeEnterotoxins
    Simmons, CP ; Ghaem-Magami, M ; Petrovska, L ; Lopes, L ; Chain, BM ; Williams, NA ; Dougan, G (WILEY-BLACKWELL, 2001-03)
    Immunologic unresponsiveness (tolerance) is a key feature of the mucosal immune system, and deliberate vaccination by a mucosal route can effectively induce immune suppression. However, some bacterial-derived proteins, e.g. cholera toxin and the heat labile toxin of Escherichia coli, are immunogenic and immunomodulatory at mucosal surfaces and can effectively adjuvant immune responses to codelivered bystander antigens. This review summarizes some of the structural and biological characteristics of these toxins and provides examples of how these properties have been exploited for tolerance induction and mucosal vaccine development.
  • Item
    Thumbnail Image
    Refocusing of B-cell responses following a single amino acid substitution in an antigen
    Chies, MD ; Martensen, PM ; Simmons, C ; Porakishvili, N ; Justesen, J ; Dougan, G ; Roitt, IM ; Delves, PJ ; Lund, T (WILEY-BLACKWELL, 2001-06)
    Intranasal immunization of BALB/c strain mice was carried out using baculovirus-derived human chorionic gonadotrophin (hCG) beta-chain, together with Escherichia coli heat-labile enterotoxin. Gonadotrophin-reactive immunoglobulin A (IgA) was induced in a remote mucosal site, the lung, in addition to a systemic IgG response. The extensive sequence homology with luteinizing hormone (LH) results in the production of LH cross-reactive antibodies when holo-hCG is used as an immunogen. In contrast to wild-type hCGbeta, a mutated hCGbeta-chain containing an arginine to glutamic acid substitution at position 68 did not induce the production of antibodies which cross-react with LH. Furthermore, the epitopes utilized in the B-cell response to the mutated hCGbeta shifted away from the immunodominant region of the parent wild-type molecule towards epitopes within the normally weakly immunogenic C terminus. This shift in epitope usage was also seen following intramuscular immunization of rabbits. Thus, a single amino acid change, which does not disrupt the overall structure of the molecule, refocuses the immune response away from a disadvantageous cross-reactive epitope region and towards a normally weakly immunogenic but antigen-unique area. Similar mutational strategies for epitope-refocusing may be applicable to other vaccine candidate molecules.
  • Item
    Thumbnail Image
    Critical role for tumor necrosis factor alpha in controlling the number of lumenal pathogenic bacteria and immunopathology in infectious colitis
    Gonçalves, NS ; Ghaem-Maghami, M ; Monteleone, G ; Frankel, G ; Dougan, G ; Lewis, DJM ; Simmons, CP ; MacDonald, TT ; Clements, JD (AMER SOC MICROBIOLOGY, 2001-11)
    Infection of mice with the intestinal bacterial pathogen Citrobacter rodentium results in colonic mucosal hyperplasia and a local Th1 inflammatory response similar to that seen in mouse models of inflammatory bowel disease. In these latter models, and in patients with Crohn's disease, neutralization of tumor necrosis factor alpha (TNF-alpha) is of therapeutic benefit. Since there is no information on the role of TNF-alpha in either immunity to noninvasive bacterial pathogens or on the role of TNF-alpha in the immunopathology of infectious colitis, we investigated C. rodentium infection in TNFRp55(-/-) mice. In TNFRp55(-/-) mice, there were higher colonic bacterial burdens, but the organisms were cleared at the same rate as C57BL/6 mice, showing that TNF-alpha is not needed for protective antibacterial immunity. The most striking feature of infection in TNFRp55(-/-) mice, however, was the markedly enhanced pathology, with increased mucosal weight and thickness, increased T-cell infiltrate, and a markedly greater mucosal Th1 response. Interleukin-12 p40 transcripts were markedly elevated in C. rodentium-infected TNFRp55(-/-) mice, and this was associated with enhanced mucosal STAT4 phosphorylation. TNF-alpha is not obligatory for protective immunity to C. rodentium in mice; however, it appears to play some role in downregulating mucosal pathology and Th1 immune responses.