Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The complex existence of γδ T cells following transplantation: the good, the bad and the simply confusing
    Sullivan, LC ; Shaw, EM ; Stankovic, S ; Snell, GI ; Brooks, AG ; Westall, GP (WILEY, 2019)
    Gamma delta (γδ) T cells are a highly heterogeneous population of lymphocytes that exhibit innate and adaptive immune properties. Despite comprising the majority of residing lymphocytes in many organs, the role of γδ T cells in transplantation outcomes is under-researched. γδ T cells can recognise a diverse array of ligands and exert disparate effector functions. As such, they may potentially contribute to both allograft acceptance and rejection, as well as impacting on infection and post-transplant malignancy. Here, we review the current literature on the role and function of γδ T cells following solid organ and hematopoietic stem cell transplantation.
  • Item
    No Preview Available
    DOCK8 is critical for the survival and function of NKT cells
    Crawford, G ; Enders, A ; Gileadi, U ; Stankovic, S ; Zhang, Q ; Lambe, T ; Crockford, TL ; Lockstone, HE ; Freeman, A ; Arkwright, PD ; Smart, JM ; Ma, CS ; Tangye, SG ; Goodnow, CC ; Cerundolo, V ; Godfrey, DI ; Su, HC ; Randall, KL ; Cornall, RJ (AMER SOC HEMATOLOGY, 2013-09-19)
    Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper-immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1(+) NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease.
  • Item
    No Preview Available
    DOCK8 is critical for the survival and function of NKT cells
    Crawford, Greg ; Enders, Anselm ; Gileadi, Uzi ; STANKOVIC, SANDA ; Zhang, Qian ; Lambe, Teresa ; Crockford, Tanya L. ; Lockstone. Helen E. ; Freeman, Alexandra ; Arkwright, Peter D. ; Smart, Joanne M. ; Ma, Cindy S. ; Tangye, Stuart G. ; Goodnow, Christopher C. ; Cerundolo, Vincenzo ; GODFREY, DALE I. ; Su, Helen C. ; Randall, Katrina L. ; Cornall, Richard J. (American Society of Hematology, 2013)
    Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper-immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1 1 NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease.
  • Item
    No Preview Available
    ZBTB7B (Th-POK) Regulates the Development of IL-17-Producing CD1d-Restricted Mouse NKT Cells
    Enders, A ; Stankovic, S ; Teh, C ; Uldrich, AP ; Yabas, M ; Juelich, T ; Altin, JA ; Frankenreiter, S ; Bergmann, H ; Roots, CM ; Kyparissoudis, K ; Goodnow, CC ; Godfrey, DI (AMER ASSOC IMMUNOLOGISTS, 2012-12-01)
    CD1d-dependent NKT cells represent a heterogeneous family of effector T cells including CD4(+)CD8(-) and CD4(-)CD8(-) subsets that respond to glycolipid Ags with rapid and potent cytokine production. NKT cell development is regulated by a unique combination of factors, however very little is known about factors that control the development of NKT subsets. In this study, we analyze a novel mouse strain (helpless) with a mis-sense mutation in the BTB-POZ domain of ZBTB7B and demonstrate that this mutation has dramatic, intrinsic effects on development of NKT cell subsets. Although NKT cell numbers are similar in Zbtb7b mutant mice, these cells are hyperproliferative and most lack CD4 and instead express CD8. Moreover, the majority of ZBTB7B mutant NKT cells in the thymus are retinoic acid-related orphan receptor γt positive, and a high frequency produce IL-17 while very few produce IFN-γ or other cytokines, sharply contrasting the profile of normal NKT cells. Mice heterozygous for the helpless mutation also have reduced numbers of CD4(+) NKT cells and increased production of IL-17 without an increase in CD8(+) cells, suggesting that ZBTB7B acts at multiple stages of NKT cell development. These results reveal ZBTB7B as a critical factor genetically predetermining the balance of effector subsets within the NKT cell population.