Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Vector priming reduces the immunogenicity of Salmonella-based vaccines in Nramp1+/+ mice.
    Vindurampulle, CJ ; Attridge, SR (American Society for Microbiology, 2003-04)
    The present studies in Nramp1(-/-) BALB/c and Nramp1(+/+) CBA mice question the significance of this genotype as a determinant of the level of gut colonization following oral administration of naturally attenuated or highly virulent Salmonella strains. In line with previous results in BALB/c hosts, vector priming of CBA mice with Salmonella enterica serovar Stanley was found to significantly compromise the immunogenicity of a recombinant construct expressing a foreign pilus protein.
  • Item
    Thumbnail Image
    Vector-primed mice display hypo-responsiveness to foreign antigen presented by recombinant Salmonella regardless of the route of delivery.
    Attridge, SR ; Vindurampulle, CJ (Elsevier BV, 2005)
    Our previous studies have shown that mice which have been orally primed with an attenuated Salmonella vector [S. enterica serovar Stanley] are hypo-responsive to foreign antigens later delivered orally by the same vector strain, responding with significantly impaired serum and intestinal antibody responses compared with those seen in unprimed controls. Initial vector priming of the gut-associated lymphoid tissue (GALT) is likely to result in impaired persistence of recombinant Salmonella later administered orally. Delivery of recombinant bacteria by the intra-peritoneal or intra-nasal route, to avoid exposure to a primed GALT, did not allow vector-primed recipients to mount normal antibody responses to the foreign pilus protein K88. The negative impact of vector priming could be largely overcome, however, if mice were exposed to the foreign protein just prior to priming with the vector strain. Using this strategy, vector-primed mice displayed normal gut IgA and intermediate serum IgG responses to K88 following oral administration of recombinant Salmonella. Our findings are compatible with the concept of epitopic suppression, in which failure to respond to the foreign vaccine antigen reflects the clonal dominance of B cells specific for epitopes associated with the vector strain.
  • Item
    Thumbnail Image
    Recombinant Salmonella enterica serovar Typhi in a prime-boost strategy
    VINDURAMPULLE, C ; Cuberos, LF ; Barry, EM ; Pasetti, MF ; Levine, MM ( 2004)
  • Item
    Thumbnail Image
    Impact of vector priming on the immunogenicity of recombinant Salmonella vaccines.
    Vindurampulle, CJ ; Attridge, SR (American Society for Microbiology, 2003-01)
    There are conflicting reports concerning the impact of prior vector priming on the immunogenicity of recombinant-Salmonella-based vaccines. A comparison of experimental protocols identified two variables which might account for this inconsistency: the potential of the vector strain to colonize the murine gut-associated lymphoid tissue (GALT) and the nature of the foreign antigen subsequently delivered by the recombinant Salmonella construct. The former was investigated by constructing an aroA mutant of the Salmonella enterica serovar Stanley vector previously used in our laboratory. Although the introduction of an aroA mutation had surprisingly little effect on GALT colonization, it did reduce the strength of antilipopolysaccharide (anti-LPS) antibody responses and the impact of vector priming. Studies were also performed to ascertain the extent to which any observed hyporesponsiveness consequent upon vector priming might be determined by the characteristics of the foreign antigen. S. enterica serovar Stanley was used to deliver either of two Escherichia coli antigens, K88 pilus protein or the LT-B toxin subunit, to vector-primed mice. Both serum immunoglobulin G (IgG) and intestinal IgA responses to K88 were completely abolished, and those to LT-B were significantly reduced, as a consequence of vector priming. When similar experiments were performed with an aroA S. enterica serovar Dublin vector, responses to K88 were significantly reduced but those to LT-B were unaffected by vector priming. Paradoxically, a priming infection with this vector induced stronger anti-LPS antibody responses but was less likely to elicit a state of hyporesponsiveness to subsequently presented foreign antigen. The impact of vector priming thus depends on both the Salmonella strain used and the nature of the foreign antigen, but our present data strengthen concerns that preexisting antivector immunity represents a serious threat to the Salmonella-based vaccine strategy.
  • Item
    Thumbnail Image
    Interaction of the initiator protein of an IncB plasmid with its origin of DNA replication
    Betteridge, T ; Yang, J ; Pittard, AJ ; Praszkier, J (AMER SOC MICROBIOLOGY, 2003-04)
    The replication initiator protein RepA of the IncB plasmid pMU720 was purified and used in DNase I protection assays in vitro. RepA protected a 68-bp region of the origin of replication of pMU720. This region, which lies immediately downstream of the DnaA box, contains four copies of the sequence motif 5'AANCNGCAA3'. Mutational analyses identified this sequence as the binding site specifically recognized by RepA (the RepA box). Binding of RepA to the RepA boxes was ordered and sequential, with the box closest to the DnaA binding site (box 1) occupied first and the most distant boxes (boxes 3 and 4) occupied last. However, only boxes 1, 2, and 4 were essential for origin activity, with box 3 playing a lesser role. Changing the spacing between box 1 and the other three boxes affected binding of RepA in vitro and origin activity in vivo, indicating that the RepA molecules bound to ori(B) interact with one another.
  • Item
    Thumbnail Image
    Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia
    Lavender, C ; Globan, M ; Sievers, A ; Billman-Jacobe, H ; Fyfe, J (AMER SOC MICROBIOLOGY, 2005-10)
    Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA -15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA -15 C-to-T mutation clustered with any one genotypic group, but that the -15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.