Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and ?? T cell perturbations
    Habel, JR ; Chua, BY ; Kedzierski, L ; Selva, KJ ; Damelang, T ; Haycroft, ER ; Nguyen, THO ; Koay, H-F ; Nicholson, S ; McQuilten, HA ; Jia, X ; Allen, LF ; Hensen, L ; Zhang, W ; Sandt, CEVD ; Neil, JA ; Pragastis, K ; Lau, JSY ; Jumarang, J ; Allen, EK ; Amanant, F ; Krammer, F ; Wragg, KM ; Juno, JA ; Wheatley, AK ; Tan, H-X ; Pell, G ; Walker, S ; Audsley, J ; Reynaldi, A ; Thevarajan, I ; Denholm, JT ; Subbarao, K ; Davenport, MP ; Hogarth, PM ; Godfrey, DI ; Cheng, AC ; Tong, SYC ; Bond, K ; Williamson, DA ; McMahon, JH ; Thomas, PG ; Pannaraj, PS ; James, F ; Holmes, NE ; Smibert, OC ; Trubiano, JA ; Gordon, CL ; Chung, AW ; Whitehead, CL ; Kent, SJ ; Lappas, M ; Rowntree, LC ; Kedzierska, K (AMER SOC CLINICAL INVESTIGATION INC, 2023-03-22)
    Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
  • Item
    Thumbnail Image
    Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques
    Chua, BY ; Sekiya, T ; Koutsakos, M ; Nomura, N ; Rowntree, LC ; Nguyen, THO ; McQuilten, HA ; Ohno, M ; Ohara, Y ; Nishimura, T ; Endo, M ; Itoh, Y ; Habel, JR ; Selva, KJ ; Wheatley, AK ; Wines, BD ; Hogarth, PM ; Kent, SJ ; Chung, AW ; Jackson, DC ; Brown, LE ; Shingai, M ; Kedzierska, K ; Kida, H ; Klein, SL (PUBLIC LIBRARY SCIENCE, 2022-10)
    Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.
  • Item
    Thumbnail Image
    Virology and immune dynamics reveal high household transmission of ancestral SARS-CoV-2 strain
    Tosif, S ; Haycroft, ER ; Sarkar, S ; Toh, ZQ ; Lien, AHD ; Donato, CM ; Selva, KJ ; Hoq, M ; Overmars, I ; Nguyen, J ; Lee, L-Y ; Clifford, V ; Daley, A ; Mordant, FL ; McVernon, J ; Mulholland, K ; Marcato, AJ ; Smith, MZ ; Curtis, N ; McNab, S ; Saffery, R ; Kedzierska, K ; Subarrao, K ; Burgner, D ; Steer, A ; Bines, JE ; Sutton, P ; Licciardi, P ; Chung, AW ; Neeland, MR ; Crawford, NW (WILEY, 2022-07)
    BACKGROUND: Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS: Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS: The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION: Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.
  • Item
    Thumbnail Image
    Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine
    Ju, Y ; Lee, WS ; Pilkington, EH ; Kelly, HG ; Li, S ; Selva, KJ ; Wragg, KM ; Subbarao, K ; Nguyen, THO ; Rowntree, LC ; Allen, LF ; Bond, K ; Williamson, DA ; Truong, NP ; Plebanski, M ; Kedzierska, K ; Mahanty, S ; Chung, AW ; Caruso, F ; Wheatley, AK ; Juno, JA ; Kent, SJ (AMER CHEMICAL SOC, 2022-08-23)
    Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.
  • Item
    Thumbnail Image
    SARS-CoV-2 infection results in immune responses in the respiratory tract and peripheral blood that suggest mechanisms of disease severity
    Zhang, W ; Chua, BY ; Selva, KJ ; Kedzierski, L ; Ashhurst, TM ; Haycroft, ER ; Shoffner-Beck, SK ; Hensen, L ; Boyd, DF ; James, F ; Mouhtouris, E ; Kwong, JC ; Chua, KYL ; Drewett, G ; Copaescu, A ; Dobson, JE ; Rowntree, LC ; Habel, JR ; Allen, LF ; Koay, H-F ; Neil, JA ; Gartner, MJ ; Lee, CY ; Andersson, P ; Khan, SF ; Blakeway, L ; Wisniewski, J ; McMahon, JH ; Vine, EE ; Cunningham, AL ; Audsley, J ; Thevarajan, I ; Seemann, T ; Sherry, NL ; Amanat, F ; Krammer, F ; Londrigan, SL ; Wakim, LM ; King, NJC ; Godfrey, DI ; Mackay, LK ; Thomas, PG ; Nicholson, S ; Arnold, KB ; Chung, AW ; Holmes, NE ; Smibert, OC ; Trubiano, JA ; Gordon, CL ; Nguyen, THO ; Kedzierska, K (NATURE PORTFOLIO, 2022-05-19)
    Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.
  • Item
    Thumbnail Image
    Immune responses to SARS-CoV-2 in children of parents with symptomatic COVID-19
    Tosif, S ; Neeland, M ; Sutton, P ; Licciardi, P ; Sarkar, S ; Selva, K ; Do, LAH ; Donato, C ; Toh, ZQ ; Higgins, R ; de Sandt, CV ; Lemke, M ; Lee, C ; Shoffner, S ; Flanagan, K ; Arnold, K ; Mordant, F ; Mulholland, K ; Bines, J ; Dohle, K ; Pellicci, D ; Curtis, N ; McNab, S ; Steer, A ; Saffery, R ; Subbarao, K ; Chung, A ; Kedzierska, K ; Burgner, D ; Crawford, N ( 2020)
    Compared to adults, children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have mild or asymptomatic infection, but the underlying immunological differences remain unclear. We describe clinical features, virology, longitudinal cellular and cytokine immune profile, SARS-CoV-2-specific serology and salivary antibody responses in a family of two parents with PCR-confirmed symptomatic SARS-CoV-2 infection and their three children, who were repeatedly SARS-CoV-2 PCR negative. Cellular immune profiles and cytokine responses of all children were similar to their parents at all timepoints. All family members had salivary anti-SARS-CoV-2 antibodies detected, predominantly IgA, that coincided with symptom resolution in 3 of 4 symptomatic members. Plasma from both parents and one child had IgG antibody detected against the S1 protein and virus neutralising activity ranging from just detectable to robust titers. Using a systems serology approach, we show that all family members demonstrated higher levels of SARS-CoV-2-specific antibody features than healthy controls. These data indicate that children can mount an immune response to SARS-CoV-2 without virological evidence of infection. This raises the possibility that despite chronic exposure, immunity in children prevents establishment of SARS-CoV-2 infection. Relying on routine virological and serological testing may therefore not identify exposed children, with implications for epidemiological and clinical studies across the life-span.
  • Item
    No Preview Available
    Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial
    Chappell, KJ ; Mordant, FL ; Li, Z ; Wijesundara, DK ; Ellenberg, P ; Lackenby, JA ; Cheung, STM ; Modhiran, N ; Avumegah, MS ; Henderson, CL ; Hoger, K ; Griffin, P ; Bennet, J ; Hensen, L ; Zhang, W ; Nguyen, THO ; Marrero-Hernandez, S ; Selva, KJ ; Chung, AW ; Tran, MH ; Tapley, P ; Barnes, J ; Reading, PC ; Nicholson, S ; Corby, S ; Holgate, T ; Wines, BD ; Hogarth, PM ; Kedzierska, K ; Purcell, DFJ ; Ranasinghe, C ; Subbarao, K ; Watterson, D ; Young, PR ; Munro, TP (ELSEVIER SCI LTD, 2021-10)
    BACKGROUND: Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). METHODS: We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 μg, 15 μg, or 45 μg, or one dose of sclamp vaccine at 45 μg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. FINDINGS: Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 μg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 μg dose (7492, 4959-11 319), and the two 45 μg dose cohorts (8770, 5526-13 920 in the two-dose 45 μg cohort; 8793, 5570-13 881 in the single-dose 45 μg cohort); 4 weeks after the second dose (day 57) with two 5 μg doses (102 400, 64 857-161 676), with two 15 μg doses (74 725, 51 300-108 847), with two 45 μg doses (79 586, 55 430-114 268), only a single 45 μg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 μg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 μg doses (GMT 228, 95% CI 146-356), two 15 μg doses (230, 170-312), and two 45 μg doses (239, 187-307). INTERPRETATION: This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. FUNDING: Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.
  • Item
    Thumbnail Image
    Distinct systems serology features in children, elderly and COVID patients
    Selva, K ; van de Sandt, C ; Lemke, M ; Lee, C ; Shoffner, S ; Chua, B ; Nguyen, THO ; Rowntree, L ; Hensen, L ; Koutsakos, M ; Wong, CY ; Jackson, D ; Flanagan, K ; Crowe, J ; Cheng, A ; Doolan, D ; Amanat, F ; Krammer, F ; Chappell, K ; Modhiran, N ; Watterson, D ; Young, P ; Wines, B ; Hogarth, M ; Esterbauer, R ; Kelly, H ; Tan, H-X ; Juno, J ; Wheatley, A ; Kent, S ; Arnold, K ; Kedzierska, K ; Chung, A ( 2020)
    SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fcγ receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fcγ receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
  • Item
    Thumbnail Image
    Systems serology detects functionally distinct coronavirus antibody features in children and elderly
    Selva, KJ ; van de Sandt, CE ; Lemke, MM ; Lee, CY ; Shoffner, SK ; Chua, BY ; Davis, SK ; Nguyen, THO ; Rowntree, LC ; Hensen, L ; Koutsakos, M ; Wong, CY ; Mordant, F ; Jackson, DC ; Flanagan, KL ; Crowe, J ; Tosif, S ; Neeland, MR ; Sutton, P ; Licciardi, P ; Crawford, NW ; Cheng, AC ; Doolan, DL ; Amanat, F ; Krammer, F ; Chappell, K ; Modhiran, N ; Watterson, D ; Young, P ; Lee, WS ; Wines, BD ; Hogarth, PM ; Esterbauer, R ; Kelly, HG ; Tan, H-X ; Juno, JA ; Wheatley, AK ; Kent, SJ ; Arnold, KB ; Kedzierska, K ; Chung, AW (NATURE PORTFOLIO, 2021-04-01)
    The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
  • Item
    Thumbnail Image
    Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features
    Rowntree, LC ; Chua, BY ; Nicholson, S ; Koutsakos, M ; Hensen, L ; Douros, C ; Selva, K ; Mordant, FL ; Wong, CY ; Habel, JR ; Zhang, W ; Jia, X ; Allen, L ; Doolan, DL ; Jackson, DC ; Wheatley, AK ; Kent, SJ ; Amanat, F ; Krammer, F ; Subbarao, K ; Cheng, AC ; Chung, AW ; Catton, M ; Nguyen, THO ; van de Sandt, CE ; Kedzierska, K (WILEY, 2021)
    OBJECTIVES: As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS: We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS: Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION: Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.