Microbiology & Immunology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 33
  • Item
    Thumbnail Image
    Interim results from a phase I randomized, placebo-controlled trial of novel SARS-CoV-2 beta variant receptor-binding domain recombinant protein and mRNA vaccines as a 4th dose booster
    Nolan, TM ; Deliyannis, G ; Griffith, M ; Braat, S ; Allen, LF ; Audsley, J ; Chung, AW ; Ciula, M ; Gherardin, NA ; Giles, ML ; Gordon, TP ; Grimley, SL ; Horng, L ; Jackson, DC ; Juno, JA ; Kedzierska, K ; Kent, SJ ; Lewin, SR ; Littlejohn, M ; McQuilten, HA ; Mordant, FL ; Nguyen, THO ; Soo, VP ; Price, B ; Purcell, DFJ ; Ramanathan, P ; Redmond, SJ ; Rockman, S ; Ruan, Z ; Sasadeusz, J ; Simpson, JA ; Subbarao, K ; Fabb, SA ; Payne, TJ ; Takanashi, A ; Tan, CW ; Torresi, J ; Wang, JJ ; Wang, L-F ; Al-Wassiti, H ; Wong, CY ; Zaloumis, S ; Pouton, CW ; Godfrey, DI (ELSEVIER, 2023-12)
    BACKGROUND: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS: 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 μg, N = 32), mRNA vaccine (10, 20, or 50 μg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS: govNCT05272605. FINDINGS: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.
  • Item
    No Preview Available
    Newborn and child-like molecular signatures in older adults stem from TCR shifts across human lifespan
    van de Sandt, CE ; Nguyen, THO ; Gherardin, NA ; Crawford, JC ; Samir, J ; Minervina, AA ; Pogorelyy, MV ; Rizzetto, S ; Szeto, C ; Kaur, J ; Ranson, N ; Sonda, S ; Harper, A ; Redmond, SJ ; McQuilten, HA ; Menon, T ; Sant, S ; Jia, X ; Pedrina, K ; Karapanagiotidis, T ; Cain, N ; Nicholson, S ; Chen, Z ; Lim, R ; Clemens, EB ; Eltahla, A ; La Gruta, NL ; Crowe, J ; Lappas, M ; Rossjohn, J ; Godfrey, DI ; Thomas, PG ; Gras, S ; Flanagan, KL ; Luciani, F ; Kedzierska, K (Nature Research, 2023-11)
    CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αβ signatures. Suboptimal TCRαβ signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.
  • Item
    No Preview Available
    Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants
    Haycroft, ER ; Davis, SK ; Ramanathan, P ; Lopez, E ; Purcell, RA ; Tan, LL ; Pymm, P ; Wines, BD ; Hogarth, PM ; Wheatley, AK ; Juno, JA ; Redmond, SJ ; Gherardin, NA ; Godfrey, DI ; Tham, W-H ; Selva, KJ ; Kent, SJ ; Chung, AW (SPRINGER, 2023-08)
    Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.
  • Item
    Thumbnail Image
    Differential antigen requirements by diverse MR1-restricted T cells (vol 100, pg 112, 2022)
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-03)
  • Item
    No Preview Available
    Are NKT cells a useful predictor of COVID-19 severity?
    Koay, H-F ; Gherardin, NA ; Nguyen, THO ; Zhang, W ; Habel, JR ; Seneviratna, R ; James, F ; Holmes, NE ; Smibert, OC ; Gordon, CL ; Trubiano, JA ; Kedzierska, K ; Godfrey, DI (CELL PRESS, 2022-02-08)
  • Item
    No Preview Available
    Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine
    Deliyannis, G ; Gherardin, NA ; Wong, CY ; Grimley, SL ; Cooney, JP ; Redmond, SJ ; Ellenberg, P ; Davidson, KC ; Mordant, FL ; Smith, T ; Gillard, M ; Lopez, E ; McAuley, J ; Tan, CW ; Wang, JJ ; Zeng, W ; Littlejohn, M ; Zhou, R ; Chan, JF-W ; Chen, Z-W ; Hartwig, AE ; Bowen, R ; Mackenzie, JM ; Vincan, E ; Torresi, J ; Kedzierska, K ; Pouton, CW ; Gordon, TP ; Wang, L-F ; Kent, SJ ; Wheatley, AK ; Lewin, SR ; Subbarao, K ; Chung, AW ; Pellegrini, M ; Munro, T ; Nolan, T ; Rockman, S ; Jackson, DC ; Purcell, DFJ ; Godfrey, DI (ELSEVIER, 2023-06)
    BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.
  • Item
    Thumbnail Image
    Heterologous SARS-CoV-2 IgA neutralising antibody responses in convalescent plasma
    Davis, SK ; Selva, KJ ; Lopez, E ; Haycroft, ER ; Lee, WS ; Wheatley, AK ; Juno, JA ; Adair, A ; Pymm, P ; Redmond, SJ ; Gherardin, NA ; Godfrey, D ; Tham, W-H ; Kent, SJ ; Chung, AW (WILEY, 2022)
    OBJECTIVES: Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. METHODS: Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. RESULTS: Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. CONCLUSION: Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.
  • Item
    Thumbnail Image
    Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2
    Pymm, P ; Redmond, SJ ; Dolezal, O ; Mordant, F ; Lopez, E ; Cooney, JP ; Davidson, KC ; Haycroft, ER ; Tan, CW ; Seneviratna, R ; Grimley, SL ; Purcell, DFJ ; Kent, SJ ; Wheatley, AK ; Wang, L-F ; Leis, A ; Glukhova, A ; Pellegrini, M ; Chung, AW ; Subbarao, K ; Uldrich, AP ; Tham, W-H ; Godfrey, DI ; Gherardin, NA (CELL PRESS, 2022-11-18)
    The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
  • Item
    Thumbnail Image
    Fc engineered ACE2-Fc is a potent multifunctional agent targeting SARS-CoV2 (vol 13, 889372, 2022)
    Wines, BD ; Kurtovic, L ; Trist, HM ; Esparon, S ; Lopez, E ; Chappin, K ; Chan, L-J ; Mordant, FL ; Lee, WS ; Gherardin, NA ; Patel, SK ; Hartley, GE ; Pymm, P ; Cooney, JP ; Beeson, JG ; Godfrey, DI ; Burrell, LM ; van Zelm, MC ; Wheatley, AK ; Chung, AWW ; Tham, W-H ; Subbarao, K ; Kent, SJ ; Hogarth, PM (FRONTIERS MEDIA SA, 2023-01-10)
    [This corrects the article .].
  • Item
    Thumbnail Image
    Fc engineered ACE2-Fc is a potent multifunctional agent targeting SARS-CoV2
    Wines, BD ; Kurtovic, L ; Trist, HM ; Esparon, S ; Lopez, E ; Chappin, K ; Chan, L-J ; Mordant, FL ; Lee, WS ; Gherardin, NA ; Patel, SK ; Hartley, GE ; Pymm, P ; Cooney, JP ; Beeson, JG ; Godfrey, D ; Burrell, LM ; van Zelm, MC ; Wheatley, AK ; Chung, AW ; Tham, W-H ; Subbarao, K ; Kent, SJ ; Hogarth, PM (FRONTIERS MEDIA SA, 2022-07-28)
    Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.